Forecasting the Financial Times Stock Exchange
100 Index using Neural Networks

Raymond McBride

MSc Computing Science project report

School of Computer Science and Information Systems,
Birkbeck College,

University of London

2004

This report is substantially the result of my own work except where explicitly indicated in the text.

The report may be freely copied and distributed provided the source is explicitly acknowledged.

Abstract

The ability of an investor to accurately forecast price movements in shares and share
indices would potentially enable them to realise enormous wealth. Many analytical
techniques exist to try to identify trends within these movements. Neural Networks is an
area renowned for its capacity to recognize complex patterns in data which cannot
otherwise be easily identified.

This project focuses on the ability of the Multilayer Perceptron, the Time Delay Neural
Network and the Recurrent Neural Network at forecasting end of day closing price of the
FTSE 100 Index.

Many different network topologies were examined, with a variety of different parameters
and training levels, before the best network of each type was compared with a Box
Jenkins ARIMA model.

The best performance was achieved using a Recurrent Network with 5 inputs, 15
hidden units, 0.1 memory depth, 0.8 learning rate and 0.5 momentum, when trained with
10000 epochs. During testing and validation of the networks, better results were
obtained from MLP networks than TDNN networks. However during the final forecast
test this was reversed.

This research concludes that the selection of appropriate network parameters is vital to
the networks prediction capability as is the optimal amount of training.

Table of Contents

Abstract 2
List of Tables 5
List of Figures 6
1 Introduction 8
1.1 Overview 8
1.2 Objectives 8
1.3 Organisation of this report 8

2 The FTSE 100 and financial time series 10

2.1 What are Share Indices? 10

2.2 The FTSE 100 index 10

2.3 Financial Time Series Analysis 11

2.4 A Traditional Methodology for Forecasting Time Series 12

2.4.1 Model Identification 12

2.4.2 Estimation 13

2.4.3 Validation 14

3 Artificial Neural Networks 15

3.1 What are Neural Networks? 15

3.2 The Biological Neuron 15

3.3 The Artificial Neuron 16

3.4 The Multilayer Perceptron and the Back Propagation Learning Algorithm 18

3.5 The Time Delay Neural Network 20

3.6 The Recurrent Neural Network 21

4 Design and Implementation 23

4.1 Variable Selection 23

4.2 Data Collection 23

4.3 Data Pre-Processing 23

4.4 Training, Testing and Validation Sets 23

4.5 Neural Network Parameters 24

4.5.1 Number of Input Neurons 24

4.5.2 Number of Hidden Layers 24

4.5.3 Number of Hidden Neurons 24

4.5.4 Number of Output Neurons 24

4.5.5 Transfer Function 25

4.5.6 Learning Rate 25

4.5.7 Momentum 25

4.5.8 Number of Time Delays 25

4.5.9 Depth of Memory 25

4.6 Evaluation Criteria 25

4.7 Number of Training Epochs 25

4.8 Implementation 26

4.8.1 Requirements 26

4.8.2 Structure 26

4.8.2.1 The Test Class 28

4.8.2.2 The Network Classes 28

4.8.2.3 The Neuron Classes 28

3

4.8.2.4 The Synapse Classes
4.8.2.5 The Processing/lIO Classes

5 Results, Analysis and Findings
5.1 Training Results and Analysis

5.2 Training Findings
5.3 Testing and Validation Results and Analysis
5.4 Testing and Validation Findings
5.5 Forecasting
6 Conclusions
6.1 Summary of Research
6.2 Conclusion
6.3 Further Research
References
Appendices

28
28

29
29

35
36
49
52
54
54
54
56
57
59

List of Tables

Table 2.1: A Time Series and its first difference

Table 5.1: The 10 lowest error producing MLP network topologies

Table 5.2: The 10 lowest error producing TDNN network topologies

Table 5.3: The 10 lowest error producing RNN network topologies

Table 5.4: Forecasting ability comparison between the top MLP, TDNN, RNN networks
and an ARIMA model

Table C.1: MLP network topologies that failed the training stage

Table C.2: TDNN network (5 inputs) topologies that failed the training stage
Table C.3: TDNN network (10 inputs) topologies that failed the training stage
Table C.4: TDNN network (15 inputs) topologies that failed the training stage
Table C.5: RNN network topologies that failed the training stage

Table D.1 Validation data used in this project, together with its first differences
Table E.1 Test and validation results for RNN — 5-15-0.1-0.8-0.5-10000

13
48
48
48

52
94
94
95
96
97
98
103

List of Figures

Figure 2.1: FTSE 100 Index Closing Price 26/09/2001 to 02/07/2004

Figure 2.2: Seasonal and Long Term variations

Figure 2.3: Plot of Time series and its first difference

Figure 3.1: Two connected Neurons

Figure 3.2: An Atrtificial Neuron

Figure 3.3: Sigmoid and Step Functions

Figure 3.4: The Multilayer Perceptron

Figure 3.5: Time to Space Transformation

Figure 3.6: The Time Delay Neural Network

Figure 3.7: The Recurrent Neural Network

Figure 4.1: UML Design Class Diagram

Figure 5.1: MLP networks with 5 inputs trained with 10000 epochs

Figure 5.2: MLP networks with 10 inputs trained with 10000 epochs

Figure 5.3: MLP networks with 15 inputs trained with 10000 epochs

Figure 5.4: TDNN networks with 5 inputs trained with 10000 epochs

Figure 5.5: TDNN networks with 10 inputs trained with 10000 epochs

Figure 5.6: TDNN networks with 15 inputs trained with 10000 epochs

Figure 5.7: RNN networks with 5 inputs trained with 10000 epochs

Figure 5.8: RNN networks with 10 inputs trained with 10000 epochs

Figure 5.9: RNN networks with 15 inputs trained with 10000 epochs

Figure 5.10: Errors of a cross-section of MLP networks when trained with different
training periods showing optimal training length. Network topologies shown in the
legend are represented

Figure 5.11: Errors of a cross-section of TDNN networks when trained with different
training periods showing optimal training length. Network topologies shown in the
legend are represented

Figure 5.12: Errors of a cross-section of RNN networks when trained with different
training periods showing optimal training length. Network topologies shown in the
legend are represented

Figure 5.13: Log graph showing test and validation results together with their mean, for
MLP networks trained with 1000 Epochs

Figure 5.14: Log graph showing test and validation results together with their mean, for
MLP networks trained with 3000 Epochs

Figure 5.15: Log graph showing test and validation results together with their mean, for
MLP networks trained with 5000 Epochs

Figure 5.16: Log graph showing test and validation results together with their mean, for
MLP networks trained with 7000 Epochs

Figure 5.17: Log graph showing test and validation results together with their mean, for
MLP networks trained with 10000 Epochs

Figure 5.18: Log graph showing test and validation results together with their mean, for
TDNN networks trained with 1000 Epochs

Figure 5.19: Log graph showing test and validation results together with their mean, for
TDNN networks trained with 3000 Epochs

Figure 5.20: Log graph showing test and validation results together with their mean, for

6

11
12
13
16
17
18
18
20
21
22
27
30
30
31
32
32
33
34
34
35

36

37

37

38

39

39

40

41

41

42

TDNN networks trained with 5000 Epochs 43
Figure 5.21: Log graph showing test and validation results together with their mean, for

TDNN networks trained with 7000 Epochs 43
Figure 5.22: Log graph showing test and validation results together with their mean, for

TDNN networks trained with 10000 Epochs 44
Figure 5.23: Log graph showing test and validation results together with their mean, for

RNN networks trained with 1000 Epochs 45
Figure 5.24: Log graph showing test and validation results together with their mean, for

RNN networks trained with 3000 Epochs 45
Figure 5.25: Log graph showing test and validation results together with their mean, for

RNN networks trained with 5000 Epochs 46
Figure 5.26: Log graph showing test and validation results together with their mean, for

RNN networks trained with 7000 Epochs 47
Figure 5.27: Log graph showing test and validation results together with their mean, for

RNN networks trained with 10000 Epochs 47
Figure 5.28: Performance of the top MLP network against the testing and validation

data 49
Figure 5.29: Performance of the top TDNN network against the testing and validation

data 50
Figure 5.30: Performance of the top RNN network against the testing and validation

data 51
Figure 5.31: Forecasting ability comparison between the top MLP, TDNN, RNN networks

and an ARIMA model 52
Figure D.1: Autocorrelation Function of first difference of validation data 99
Figure D.2: Partial Autocorrelation Function of first difference of validation data 99
Figure D.3: Autocorrelation Function of residuals of validation data 100
Figure D.4: Partial Autocorrelation Function of residuals of validation data 100
Figure D.5: Time series plot together with 5 day forecast for validation data 101
Figure D.6: Minitab printout of forecast for validation data together with key statistics 102

Chapter 1 - Introduction

1.1 Overview

The ability to anticipate fluctuations in financial markets would allow any investor to
realise enormous quantities of money. A large amount research of has therefore been
undertaken, in a variety of different fields to try to come up with some way of accurately
predicting these movements. Many statistical techniques have been formulated, which
are employed by analysts to try to gain any competitive edge.

Neural Networks is an area that has long been heralded for its ability to identify patterns
and trends in data that cannot easily be discerned by the human eye. For this reason,
much research has and is being done in the application of Neural Networks to financial
forecasting.

Current research includes work done by Kim (Kim, 1998) which uses a hybrid network
called a Time Delay Recurrent Neural Network to forecast Korean stock market prices,
research by Chenoweth and Obradovic (Chenoweth, Obradovic, 1996) which combines
Neural Networks and Expert Systems to forecast the S & P 500 Index and are as
diverse as research done by Shazly and Shazly (Shazly, Shazly, 1999) which combines
Genetic Algorithms with Neural Networks to forecast currency prices.

1.2 Objectives

The aims of this project are to test and compare the ability of different types of neural
networks at forecasting the end of day closing price of the Financial Times Stock
Exchange 100 Index.

Three different types will be assessed. These are the Multilayered Perceptron, the Time
Delay Neural Network and a version of the Recurrent Neural Network based on the
Elman Network. The Time Delay and Recurrent Neural Networks have been included in
this research because of their renowned capacity for tackling temporal problems.

This report will mainly focus of the design and implementation of the aforementioned
neural networks together with analysis of their forecasting ability.

1.3 Organisation of this report

This report is divided into five additional chapters:

1) Chapter 2 - The FTSE 100 and financial time series. This chapter gives a brief
description of what share indices are, followed by short history of the FTSE 100 Index.

The remains of this chapter concentrate on how financial time series are analysed
together with a description of a traditional method for forecasting them.

2) Chapter 3 — Artificial Neural Networks. This chapter looks at what Artificial Neural
Networks are, and shows how artificial Neurons have been based on biological ones. It
then goes on to discuss the Multilayer Perceptron and has a detailed look at the Back
Propagation learning algorithm. Variations of the Multilayer Perceptron known as the
Time Delay Neural Network and the Recurrent Neural Network are then described.

3) Chapter 4 — Design and Implementation. This chapter highlights a java
implementation of the three networks mentioned above, together with testing
parameters.

4) Chapter 5 — Presents the results together with analysis and discussion from testing
the above implementation.

5) Chapter 6 — Discusses the successes and failures of this project.

Chapter 2 — The FTSE 100 and financial time series

2.1 What are Share Indices?

A Share Index is an average that lists the leading companies in a market based on their
market capitalisation (Valdez, 2003). Market capitalisation is a calculation of the
companies share price multiplied by the number of its shares. This calculation is used
as a weighting system, whereby movements in the share price of larger companies will
have a greater effect on the index than movements in smaller companies (Valdez,
2003).

The popularity of investing directly in these indices has increased over recent. Kaufman
suggests:

“Share Indices provide a useful means for allowing individuals or organisations to invest
in the overall market movement rather than take the higher risk of selecting individual
securities” (Kaufman, 1998).

The companies that make up these indices come from all over the business spectrum.
As a result of this diversity and also due to additional influences exerted by other
markets, there are a great many factors that can affect their value. This makes the task
of forecasting their movements an extremely difficult one. Even so, much time and effort
is spent by institutions and investors analysing their behaviour.

2.2 The FTSE 100 index

The first index to be calculated on the market traded at the London Stock Exchange was
known as the Financial Times Ordinary Share Index. This began in 1935 and was based
on the top 30 companies (Valdez, 2003).

As time went on, the 30 Ordinary Share Index became an inadequate measure, so the
Financial Times Stock Exchange 100 Index was formed in 1984, increasing the number
of companies listed to 100 (Valdez, 2003). The index began at the level of 1000 and
represent 77% of the capitalisation of the whole market. It is calculated every fifteen
seconds from 8.30am to 4.30pm (Valdez, 2003).

Figure 2.1 below shows how the index has fluctuated over the last three years.

10

7000

6000

A

5000 ’
2000 MW,W

3000

2000

—FTSE 100 index closing price

1000

26/09/2001
23/10/2001
19/11/2001
141272001
15/01/2002
11/02/2002
08/03/2002
08/04/2002
03/05/2002
30/05/2002
28/06/2002
25/07/2002
21/08/2002
18/09/2002
15/10/2002
11/11/2002
06/12/2002
07/01/2003
03/02/2003
28/02/2003
27/03/2003
25/04/2003
23/05/2003
20/06/2003
17/07/2003
13/08/2003
10/09/2003
07/10/2003
03/11/2003
28/11/2003
29/12/2003
26/01/2004
20/02/2004
18/03/2004
16/04/2004
14/05/2004
11/06/2004

Figure 2.1: FTSE 100 index Closing price 26/09/2001 to 02/07/2004

2.3 Financial Time Series Analysis

As the value of Share Indices rise and fall over time, we can view this price change/time
combination as a financial time series’. Chapman defines a time series as:

“A collection of observations made sequentially through time. It is said to be continuous
when observations are made continuously through time and discrete when observations
are taken at specific times, usually equally spaced.” (Chatfield, 2004)

These definitions can be applied to the movements of the FTSE 100 closing price over
time and available techniques for analysis and prediction are therefore applicable.
Traditional methods of analysis are primarily concerned with decomposing the
variations in the time series into components representing long term trends, seasonal
and other cyclical variations (Chatfield, 2004). See Figure 2.2 below.

11

Long term trend

\ \

———— Seasonal Lows

Y -Axis

X-Axis
Figure 2.2 Seasonal and Long Term variations

After these variations have been removed, usually additional fluctuations remain.
Whether or not these are random however is a contentious issue (Chatfield, 2004).

Fundamental Analysts study economic and political features, everything that make
prices what they are. They believe that there are far too many random influencing
factors so these fluctuations must be down to the price following a random walk (Kahn,
1999). In other words, the price at time t equals the price at t-1 plus some random
element.

Technical Analysts on the other hand are more concerned with the study of the market
itself and trends in the price and traded volume (Kahn, 1999). They have techniques
such as Autoregressive (AR) and Moving Averages (MA) modelling to try to find
additional shorter trends in this remaining data (Kaufman, 1998).

AR refers to using the past data to self predict and MA refers to concept of smoothing
the data by using an average of the past n days (Kaufman, 1998).

2.4 A Traditional Methodology for Forecasting Time Series

Box and Jenkins (Box, Jenkins, and Reinsel, 1994) developed a systematic approach
for identifying forecasting models which incorporated both techniques of AR and MA.
Known as Autoregressive Integrated Moving Average (ARIMA), it is made up of three
stages, Model Identification, Estimation and Validation.

2.4.1 Model Identification

The first step in the process is to determine if the series is stationary and/or seasonal
(NIST/SEMATECH, 2004). A series is said to be stationary if the mean, variance and
autocorrelation remain constant over time (NIST/SEMATECH, 2004). This means
that the series is flat and not trending. A common way to make a series stationary is to
take differences (Kaufman, 1998). Table 2.1 shows a small time series and its first
difference.

12

Table 2.1: A Table showing a Time Series and its first difference

Time Series First Difference
5837.8848 *
5842.3397 4.4549
5898.4163 56.0766
5860.7787 -37.6376
5947.2534 86.4747
6037.8071 90.5537
6019.8445 -17.9626
5987.3954 -32.4491

Figure 2.3 below shows a plot of the time series and its first difference

610
6050

6000

5950
5900

5850

5800
5750

5700

——Time
Serie

100

60

ao1—\

——First
Differenc

Figure 2.3: Plot of Time series and its first difference

Once it has been established that the series is stationary, the next step is to examine
plots of its Autocorrelation (ACF) and Partial Autocorrelation (PACF) Functions
(MINITAB, 2004). These are measures of how related data values are to each other.

e An ACF with large spikes at initial lags that decay to zero or a PACF with a large
spike at the first and possible at the second lag indicates an autoregressive
process

e An ACF with a large spike at the first and possibly at the second lag and a PACF
with large spikes at initial lags that decay to zero indicates a moving average
process.

e The ACF and the PACF both exhibiting large spikes that gradually die out
indicates that both autoregressive and moving averages processes are present
(taken from MINITAB, 2004).

2.4.2 Estimation

ARIMA is usually shown in the format ARIMA(p, d, q), where p is the number of
autoregressive terms, d is the number of differences and q is the number of moving
average terms (Kaufman, 1998). This next step involves the estimation of these
coefficients. In general parameters are selected and then the validation step is

13

performed. If the model is found to be unacceptable, new parameters are tested. Each
parameter is a number between 0 and 5, with the sum of all 3 not exceeding 10
(MINITAB, 2004).

2.4.3 Validation

The final step is to examine the residuals, which is the data left over, and should be just
noise. Plots of the ACF and PACF of the residuals are examined for any large spikes. If
any appear, then new parameters should be selected (MINITAB, 2004).

Once validation is found to be acceptable, the model is ready for forecasting. Appendix

D shows forecasts made on the FTSE100 data used in this project, using the ARIMA
process and Minitab 13

14

Chapter 3 — Artificial Neural Networks

3.1 What are Neural Networks?

Traditionally, the main focus of computing has been based on the creation of
programmes that perform certain tasks to an exact specification and in a procedural
way (Schalkoff, 1997). Computers have become extremely fast at tasks such as adding
numbers and can complete these in a fraction of the time that it would take a human to
(Beale, Jackson, 2001).

However, other tasks such as speech recognition and visual identification, which are
performed easily by humans, are not executed as effectively by procedural computer
programmes (Haykin, 1999)

To understand why humans are better than computers at these tasks, we need to have
an understanding as to how computing is tackled in biological systems (Beale,
Jackson, 2001). The centre for computing in a human being is the brain. The
architecture of the brain, rather than being serial like a computer, has a parallel design
(Beale, Jackson, 2001). This allows it to process many different pieces of information at
the same time, which all need to interact to produce a solution (Beale, Jackson, 2001).

In addition to its parallel nature, one of the most important features of the brain is its
ability to learn. Rather than having specific instructions for each step, the brain can pick
things up based on previous experience (Beale, Jackson, 2001).

By using these principles we can design computer programmes known as Neural
Networks which attempt to apply the brains solutions to these tasks.

3.2 The Biological Neuron

A human brain contains about 10" processing units called neurons each of which is
connected to about 10* other neurons (Beale, Jackson, 2001). Figure 3.1 below, shows
two connected neurons.

The main components of a Neuron are as follows:

The Soma — This is the body of the neuron and contains the cell nucleus.

The Dendrites — These are fine nerves which receive all input into the neuron
The Axon — This nerve is used for the output of the neuron

The Synapses — These are special connectors that join the axon of one cell to
the dendrite of another cell.

15

W i
Dendrites ——{\ '/

Axon P & i} _—
T SS=R
| ."f_/.._i-"- = :\‘
i Vil il
(| l‘k g .-"':!w o bk
[If . -'.""T = i e /"f
i ' e
fh"l iy il
‘mﬁﬁb | Somaandcell |\ [y *
. S Rt | nucleus A "
21 ‘::/.; : f\ ™ P
-#"'".‘"zr-l"'. s i s e
— # Tyl ynap.s,es = e v o4\
2 B —~=7
L B LS S A | 4 el

Figure 3.1: Two connected Neurons.

Neurons receive input from the synapses of other neurons in the form of chemicals
know as Neurotransmitters. This causes an electrical charge to build up in the receiving
neuron. If this charge exceeds a threshold limit, an electrical pulse will be sent down the
axon to be transmitted to other neurons via the synapses (Beale, Jackson, 2001).

Learning is thought to occur when modifications are made to the synaptic junctions
allowing more or less neurotransmitters to be released (Beale, Jackson, 2001).

3.3 The Artificial Neuron

The Atrtificial Neuron was first proposed by Warren S McCulloch and Walter Pitts in
1943. The basic features of this model are:

e The neuron receives a series of weighted inputs

e The neuron calculates the summation of it's inputs

e The summation of the inputs is passed through an activation function which will
output either a 0 or 1 based on whether the sum is above or below a certain
threshold (McCulloch, Pitts, 1943).

Figure 3.2 below shows a representation of an artificial neuron.

16

uy)
w

Inputs <

f _ Output
Yy

A

Summation Activation
Unit Function

Figure 3.2: An Artificial Neuron

A bias can be added to the neuron which usually has the constant output of -1. This bias
is added to push the activation towards 0 (Beale, Jackson, 2001).

The activation function can take many forms. At its most simplest, a step or heavyside
function can be used (Beale, Jackson, 2001). Once the summation of the inputs
reaches the threshold, the output becomes a one. An alternative to the step function is
the sigmoid function. The sigmoid function has the following equation:

Jx) =

Where e is Euler's Number and k is the slope parameter. The slope parameter controls
the gradient of the sigmoid and therefore controls its sensitivity (Beale, Jackson, 2001).
The lower the number, the more sensitive the function. The benefit of using the sigmoid
function as opposed to the step function is that the sigmoid function doesn’t produce
such a dramatic effect on the output (Beale, Jackson, 2001). This allows the network to
accept large inputs and still remain sensitive to small changes (Beale, Jackson, 2001).

1
l+e

Figure 3.3 shows the difference between the sigmoid and step functions.

=] 5
2 3
o

input input
Sigmoid Function Step Function

A
v
A

v

Figure 3.3: Sigmoid and Step Functions

Learning in single artificial neurons or Perceptrons as they are know, is achieved by
altering the weights of the connections between neurons to increase or decrease their
strength (Beale, Jackson, 2001). There are several algorithms available setting out how
weights should be adjusted, the most common of which is the Widrow-Hoff delta rule.
This rule relies on being able to calculate the difference between the target output of the
neuron and the actual output and then adjusting the weights in proportion to this error in
order to minimise it (Beale, Jackson, 2001).

3.4 The Multilayer Perceptron and the Back Propagation Learning
Algorithm

The fundamental problem with single Perceptrons is their inability to solve simple
linearly inseparable problems such as XOR (Minsky, Papert, 1969). However, by
arranging Perceptrons in layers it is possible to overcome this problem. This new model
is known as the Multilayer Perceptron (MLP) (Beale, Jackson, 2001), an example of
which can be seen in figure 3.4 below. This MLP has 3 input units. The output of these
input units is fed together with a bias to the 5 hidden units. These hidden units in turn,
together with a bias feed the 2 output units.

Figure 3.4: The Multilayer Perceptron
18

Unfortunately as we don’t know the output of Perceptrons in the hidden layer of the MLP
we cannot use the Widrow-Hoff learning algorithm.

A new learning algorithm is therefore required. Originally proposed by P Werbos
(Werbos, 1974) and later ‘rediscovered’ by Rumelhart et al (Rumelhart, Hinton,
Williams, 1986), the Generalised Delta Rule or Back-Propagation Rule tackles these
problems by calculating the error for a particular input and then back-propagating it to
the previous layers. The Back-Propagation algorithm consists of two phases know as
the forward pass and the backward pass. At the outset, all the weights and thresholds
of the MLP are set to small random values (Beale, Jackson, 2001). During the forward
pass, inputs are presented to the input neurons. These inputs are then transfer to each
of the hidden neurons which computes the sum of the inputs and their weights. Using
the following function (Beale, Jackson, 2001):

n—1

Vi T L W,
i=0

Where w is the weight of input / and x is the value of input i. This sum is then passed
through the threshold function. The hidden neurons produce an output based on the
threshold function which is then transferred to the output neurons. The output neurons
do their own summation of inputs and weights and this is again passed through the
threshold function. The output of the output neurons is calculated and this is compared
to the target output, to produce an error. The error is computed as follows (Beale,
Jackson, 2001):

2
Ep=; 2.(t,;=0p)

Where t is the target output and o is the actual output. The next stage is the backward
pass. This involves adjusting the weights of the connections between the hidden and
output neurons and input and hidden neurons to minimise the error. The output of a
neuron is based on its threshold function, so the derivative of its threshold function can
be used to pass the error back to the previous layer. The function used to calculate the
new weights is as follows (Beale, Jackson, 2001):

wi(t + At) = wi(t) =nd,0,, + a(w () —w(t— 1))

® 0, — The output of the input Neuron

° Spj — The error term.

8,; = ko, (1=0,)(t,—0,) ;c:(rj output units (Beale, Jackson, 2001)

8141‘ - kopi(l _OPJ)%BP”WJ" For hidden units (Tveter, 2001) where the

sum is over the n neurons in the layer
above neuron j

19

e n- The Learning Rate. This is a number between 0 and 1 which controls the
size of adjustments made to the weights. A small number means that the
network could take a long time to learn. A large number will allow the network to
learn faster, but could potentially push the network into a local minimum (Beale,
Jackson, 2001).

e o— Momentum. This is also a number between 0 and 1 which when used in
conjunction with a small learning rate can help to speed up convergence (Beale,
Jackson, 2001)

As the data set that we are using consists of a time series, we need some way of
representing time across our network. We will pre-process time by performing a
temporal to spatial transformation. The spatial information will be passed to the
network which contains a representation of time (Christodoulou, 2004).

To achieve this we pass a ‘sliding window’ across our data. At any given time t, for
n inputs and time step r, the input values willbe ¢, t-1,t-271....t-n 1. The target
output will be t + 1.

At each time step the values of the nodes are shifted down and the one at the end
drops out. A new value is then inserted at the first node. See Figure 3.5 below.

t t-21 t-nt
/*\ KL /L
1\\< \ ' _/

()

Figure 3.5: Time to Space Transformation

3.5 The Time Delay Neural Network

The main problem with representing time as discussed above is the inability of the
network to recognise the same pattern shifted in time.

If we consider the binary pattern 0011100100 at time t, the corresponding pattern at time
t + 2 r might be 0000111001. The MLP with temporal to spatial transformation would
see these as two completely different patterns (Christodoulou, 2004).

The Time Delay Neural Network (TDNN) as described by Lang et al (Lang, Waibel,

Hinton, 1990) can capture this translational invariance. Figure 3.6 below shows an
example of this type of network.

20

Figure 3.6: The Time Delay Neural Network

Each input and hidden node in the TDNN, stores a fixed amount of previous values, the
amount of which depends on the delay length.

The TDNN uses the standard Back Propagation learning algorithm, with a slight
variation:

e All values for each node are used to feed the nodes in the next layer.

e Weight changes are calculated for each value of each node and an average is
taken.

e All weights for each node are then updated to the same value to achieve
invariance (Schalkoff, 1997).

A ‘sliding window’ will also be used in conjunction with the network to feed in the data.

3.6 The Recurrent Neural Network

Using a fixed number of delays, the number of which is set in advance, can however
impose limitation of the length of patterns that can be learnt (Christodoulou, 2004).
Additionally, each delay can be viewed to a certain extent, as an independent node. If
large numbers of delays are used, this could dramatically increase the length of time
required for training (Christodoulou, 2004). The Recurrent Neural Network (RNN) is an
alternative to the TDNN which works on the principle that time and memory are highly
task dependent, so networks should be allowed to achieve their own representation of
them, instead of having them fixed (Elman, 1990).

These networks have an extra set of nodes called Context Neurons. At each time step
the current value of the hidden units is copied to corresponding context units (E/man,

21

1990). A proportion of the previous value of the context unit is also used to provide its
new value. The size of this proportion is known as the Memory Depth. The following
equation is used to calculate this new value (Hertz, Krogh, Palmer, 1991):

Ct+1)=aCyr)+ H{)

Where C is the context unit, H is the hidden unit and a is the proportion. This value is
then fed to the network at the next time step together with the new inputs from a sliding
window. Figure 3.7 shows a similar layout to the RNN that is used in this project.

The back propagation learning algorithm can also be used for weight adjustment.

Figure 3.7: A Recurrent Neural Network

22

Chapter 4 — Design and Implementation

The usefulness of a neural network is measured on its ability to generalise. That is to
successfully classify patterns that have not been previously presented (Beale, Jackson,
2001). This generalisation ability is achieved through the combined effect of the
network’s parameters. However, there is no magic formula with respect to their
selection to produce the ideal network topology (Kaastra, Boyd, 1996). Instead the
process is pretty much trail and error. Many combinations must be tried out, for each
type of network, the result of which can be exceptionally long training and testing
periods.

Kaastra and Boyd (Kaastra, Boyd, 1996) highlight a number of distinct requirements
that need to be considered.

4.1 Variable Selection

The aim of this project is to forecast the end of next day closing price of the FTSE 100
Index. There are many variables that can be used for this purpose, such as traded
volume and moving averages etc. However for simplicity sake, | have only used
historical closing price data.

4.2 Data Collection

Data was downloaded directly from the FTSE’s website at www.ftse.com in CSV
format, free of charge. Once downloaded the data was manually checked for error,
before been converted into XML format and validated against the project schema which
can be seen in Appendix B

4.3 Data Pre-Processing

There is a plethora of ways to transform the raw data in order to help the network
identify trends and patterns, the usefulness of which should be compared and tested
against each other. As a result of time requirements, | have only performed a simple
scaling of the data between the values of 0 and 1.

4.4 Training, Testing and Validation Sets

There seems to be some confusion in current literature as to the correct sequence of
names used for the different stages used in training and testing. Some refer to the
process as being Train — Validate — Test (Sarle, 2004), while others refer to it as Train —
Test — Validate (Kaastra, Boyd, 1996). The stages themselves however remain the
same. For the purposes of this report, | will use the naming convention used by Kaastra
and Boyd, which is the latter.

23

http://www.google.com/url?q=http%3A%2F%2Fwww.ftse.com%2F&sa=D&sntz=1&usg=AFQjCNGNg4U08reEECDlhjreYA_UDT7Hag

After the data was converted into XML format, it was divided up into the following sets:

e The Training Set — This data is used in the training process and is repeated
shown to the network to try to get it to identify patterns. It is the largest of the
three sets, comprising of 500 values dating from 26-09-2001 to 17-09-2003
inclusive.

e The Testing Set — This data is used after the network has been trained to the
required level to test the networks ability to generalise. It consists of 100 values
dating from 18-09-2003 to 09-02-2004

e The Validation Set — The purpose of this data is similar to that of the Testing Set,
it is also used after the Training Set, but it is used to validate the testing, to
prevent fluke results. It also consists of 100 values, dating from 10-02-2003 to
02-07-2004

4.5 Neural Network Parameters

There are a number of different parameters that fall under this heading. These include
the number of input neurons, the number of hidden layers, the number of hidden
neurons, the number of output neurons, the transfer function, the learning rate, the
momentum, the number of time delays and the depth of memory.

4.5.1 Number of Input Neurons

In a general network that doesn’t use the sliding window concept, it is usual to have one
input for each input variable. However by using a sliding window we can increase the
size of patterns that the network can see at each time step. Networks with 5, 10 and 15
input neurons have subsequently been tested.

4.5.2 Number of Hidden Layers

It is possible to create networks with multiple hidden layers. This project will only test
networks with 1 hidden layer as Kolmogorov representation theorem proves that no
more than 3 layers in total are needed to represent any function (Beale, Jackson, 2001).

4.5.3 Number of Hidden Neurons

The number of hidden neurons controls the networks ability to generalise. Too few
neurons and the network will not be able to learn, too many neurons and there is a
danger that the network may learn too well and memorise individual points, losing its
ability to generalise. For the purposes of these experiment, networks with 5, 10 and 15
hidden units have been tested.

4.5.4 Number of Output Neurons

The nature of the problem that is investigated in this project is one of trying to forecast a
single specific future value. One way of tackling this could involve several output
neurons, each representing a range of values. The approach taken in this project

however is to have one output neuron, whose output value will be the forecasted value.

24

4.5.5 Transfer Function

For the purposes of this project, the sigmoid transfer function has been used.

4.5.6 Learning Rate

As described in the previous chapter, learning rate is used to control the size of
adjustments made to the weights of the connections between neurons. This is a
number between 0 and 1, the larger the number the faster the learning. Learning rates
of 0.01, 0.2 and 0.8 have been chosen to cover a wide range of learning speeds.
4.5.7 Momentum

Also described in the previous chapter, momentum is used in conjunction with a low
learning rate in order to speed up convergence. Values of 0.0, 0.1, 0.5 and 0.9 have
been tested.

4.5.8 Number of Time Delays

Described in the TDNN section of the previous chapter, 1 and 2 delays have been
tested.

4.5.9 Depth of Memory

Described in the RNN section of the previous chapter, depths of 0.1, 0.5, and 0.9 have
been tested

4.6 Evaluation criteria

The performance of a neural network can be measured by the error produced between
the target output and the actual output. There are many different error functions that can
be used to compute this error. For the purposes of this project we will use the sum of
the squared error (Beale, Jackson, 2001).

4.7 Number of Training Epochs

Networks need to be trained until they reach a point where there is little improvement in
their error. This point is known as convergence. However if the network is trained for too
long it can result in poor generalisation performance. This is known as overfitting
(Kaastra, Boyd, 1996). The networks in this report have been trained with 1000, 3000,
5000, 7000 and 10000 epochs, to test for this over training.

25

4.8 Implementation

The implementation language chosen for this project was Java, with processing data
stored in XML format. These were chosen because of their ease of use and platform
independence.

4.8.1 Requirements

The main focal point of this project is to test the ability of many different pre-selected
MLP, TDNN and RNN topologies to forecast FTSE 100 closing prices. By the very
nature of this problem, very little interaction is requirement between the user and the
system. This requirements section will therefore focus on the requirements that the
system has rather than the requirements that the user has.

These requirements are listed as follows:

e Parse XML data for training and testing or validating and store values in internal
structures

Normalise values to between 0 and 1

Create network with specified parameters

Train network to specified number of epochs

Test or validate network

Write results to log file

4.8.2 Structure
The software was designed using Object Oriented principles of Inheritance, Data

Encapsulation and Polymorphism. Figure 4.1 below shows the UML Design Class
Diagram which illustrating the software classes created.

26

niteToFile()
oseFilel

XMLParser

pgetDocument() : <unspecified>

BiasNeuron

Elmlateo Utpu()

InputNeuron

FEnpUt()

FsetBias()
ealculateOutput()
FcalculateDelayedOutput(}
-summation() : double
F#sigmoidActivation() : double
HgetinputValue() : double
FsetinputVa ue()
#netOutputvialua() : double
setOutputValue()

HiddenNeuron

pical culateDelay edOutput()
pgetOutputs() . <unspecified>

QutputNeuron

OutputFile | 4

DataProcessor

Hscale() : <unspecified>

1

Network

BicreateMeurcns()
HeonnectNeurons()

Hinitialise()

Hical culateOutputEmon()

Fical culateHiddenErmor()

Htcal culateOutputWeightChange()
ttcal culateHiddenWeightChange()
badjustOutput\eights()
adjustHiddenWeights ()
FsendToOutput()

bisendToHidden()

2cal culateHiddenOutput()
FicalculateEmor() : double

| beginTest()

traing)

+est()

+validate()

btgetSiope() : int

digetl eamingRate() : double
Bigethoment um() : double
HsetTargetOutput])
FHsetOutputNeuron()
HgetOutputErrorTemn() : double
HgetHiddenEmorTerm() : double
GisetHiddenErmorTemmy()
btgethextinput() © int
FgetBiasToOutput() : Synapse
HisetBiasHidden()
HgetBiasHidden() : BiasNeuron
HsetBiasOutput()

BigetBias Output() : BiasNeuron
HigetBias ToHidden() : <unspecified>
HgetBias ToHidden() : Syrapse
HgetHiddenToOutput() : <unspecified>
FigetHiddenToOutput() : Synapse
FgetinputToHidden() : <unspecified>
FigetinputToHidden() : <unspecified>
HgetinputToHidden() : Synapse
HgetinputNeuran() @ Neuron
HgetinputNeurons{) : <unspecified=
FisetinputNeurcns)
HgetHiddenMeuron() © Neuron
HgetHiddenNeurons() : <unspecified>
dizetHiddenNeuron()
btnetinputData() - double

FgetinputData() : <unspecified>

Test

+getDatal) : <unspecified>
+testMLP()

+testTONN)

+testRMN()

1

MLP

einitialise{)

TDNN

HcreateNeurons()
calculateHiddenOutput()
lateO utputWeightChange()

fcal culateHiddenWeightChange()
ical culateHiddenErmor()
pinitialise()

wcreateNeurons|)
pEconnect Neurons()
pEinitialise()
misendToHidden()
mEsendToO utput()

» 1

ContextNeuron

EEnput()

becalculateOutput()

#getWeight() : double
setWeight()
F#calculateWeightChange()
#calculateWeightChange()
adjus tWeights()
Ftransferyalue

Y

ContextSynapse |

HtransferValuel)

Figure 4.1: UML Design Class Diagram

The design can be divided into five distinct sub-structures. These are as follows:

The Test Class

The Network Classes
The Neuron Classes
The Synapse Classes
The Processing/lIO Classes

27

4.8.2.1 The Test Class

This class is used to instantiate various network object with the correct parameters and
train, test and validate them. This class is multi-threaded to take advantage of any dual
processing capability of the execution environment.

4.8.2.2 The Network Classes

This group consists of the abstract base class Network and its derived classes MLP,
TDNN and RNN. The base class contains the general methods for creating and
connecting neurons, the standard implementation of the back propagation learning
algorithm and methods for training, testing and validating. The derived classes contain
overriding methods for network type specifics.

4.8.2.3 The Neuron Classes

This group comprises of the abstract base class Neuron and its derived classes
InputNeuron, HiddenNeuron, OutputNeuron, BiasNeuron and ContextNeuron. The base
class contains methods for receiving input, summation of the inputs, the sigmoid
activation function, calculation of output and outputting. The derived classes contain
overriding methods which deal with the use of time delays, recurrent memory and bias.

4.8.2.4 The Synapse Classes

There are two synapse classes. The base class is called Synapse and its methods
deal with transferring values, calculating weight changes and adjusting the weight. The
derived class is ContextSynapse and is specific to the RNN network. Its weight is not
adjustable.

4.8.2.5 The Processing/I.O. Classes

This contains three different classes that are essential for the running of the project.
These are the XMLParser class which is used to parse the XML document and return a
W3 Consortium Document Object Model (DOM) object. The DataProcessor class,
which is used to scale the data between 0 and 1. Finally the OutputFile class which is
used to create log files in CSV format.

Full source code listings can be found in Appendix A

28

Chapter 5 — Results, Analysis and Findings

In total 648 network combinations began the training stage.

The project development took place on a PC with a 1GB AMD Athlon processor, running
Windows XP professional. This machine however, was not sufficiently powerful enough
for execution, so a dual 64bit SPARC machine running Sun Solaris OS was used.

Training times ranged from between 4 minutes to 30 minutes a network depending on
the number of neurons and the number of training epochs used.

Throughout this chapter reference will be made to network topologies. This will take the
following standard formats:

MLP: input neurons-hidden neurons-learning rate-momentum-(epochs)
TDNN: input neurons-hidden neurons-delays-learning rate-momentum-(epochs)
RNN: input neurons-hidden neurons-memory depth-learning rate-momentum-(epochs)

5.1 Training Results and Analysis

The training stage involves repeatedly showing the networks the same set of data and
adjusting the weights of the connections between neurons in order to reduce the output
error. All networks were initially trained with 10000 epochs and their average error for
each epoch was recorded in the log file. The data set used for this was from 09/2001 to
09/2003. It must be stated that a networks ability to learn training data bears little
correlation to its ability to generalise with data that it hasn’t seen before. However this
research was carried out in order to eliminate networks that showed no sign of being
able to learn or who have settled in high local minima. At this stage, networks were
removed if they did not pass the following criteria:

e Achieve a final output error less than 1.0 x 10°and
e Showed smooth(ish) learning

1.0 x 10 was chosen as the acceptable error limit. On examination of training results it
appeared to strike a balance between evicting networks that were obviously stuck in
local minima and not evicting too many networks so that very few made it to the next
stage.

Figure 5.1 below show the effects of training MLP networks with 5 inputs

29

1 00E =00

1 .00E-M

10602 ¢

1,008 013 =T

100804
et D010 g A-00100 40un-ps 400100 =g A0 e 0R0 . m— 000 24000 4

40800 £5-0805 50800 L T 1000100 S0 0008 S00-08 ——S0020 - SR0201
SIS £100300 — HI0080 ——S00E01 ——5100508 S M0808 —F1500010 R0 00 1 — S H0080
[S IR00100 — 515020 — &R0 000 — S 0008 —4150000 SR —SAS0E0) 50808 — 000

Figure 5.1: MLP networks with 5 inputs trained with 10000 epochs

It can be clearly seen in this graph, that 3 of the networks, shown as the yellow (5
hidden units), grey (10 hidden units) and blue lines (15 hidden units), did not achieve the
output error of 1.0 x 10. These 3 networks all have the same learning rate (0.8) and
momentum (0.9). This would suggest that these networks have got stuck in local
minima. Figure 5.2 below shows the effects of training MLP networks with 10 inputs.

—iBEDEG —— S0BIET EODIAE 05008 — 05018 — Shal — bSbiEE — IBADE00
B [52 F-] i0S-0E0.4 A0-E0 805 050800 A0 1000100 Bl -0 0101 A0 b0 105 Al B-00000
ARG AR b2 W EEEE DR —— i0E0] — RS b0
e I T T T T E e T e e e T e T E o
L0080 ——WE088) — 10150888

Figure 5.2: MLP networks with 10 inputs trained with 10000 epochs

30

All the MLP networks that had 10 input neurons managed to achieve an output error of
at least 1.0 x 10. The one network that causes a slight concern is the one shown in
yellow (5 hidden units), which seems to get worse before getting better. Interesting, this
network also had the same learning rate (0.8) and momentum (0.9) as the networks
with 5 inputs units that failed this stage. This network however will continue to be
included. Figures 5.3 below shows the effects of training MLP networks with 15 inputs

1 00 +00

1 53 1047 1570 ArE) 2616 NFS 3GET M85 4T0R 52 STE4 G277 G000 TI2d TO4E &G0 8852 S415 G800

1 00E-

1 00E .04

— 1550010 [EFTIEE] TEE00105 SEDDI00 — IR58E0 — 1550301 EE0F0E —is50a0
1580 50 [LEXEE 1550805 15-50 £00 BE 10 0 16-A0-0.0001 15100010 5 5100 0.8
15-10-82-0 B0 30,1 15100205 151040289 B0 30 15400800 15100885 15100 509
15159010 ey 151500105 15-15-0.01-0% frarmEn 15-150.20.0 15150208 — 1510300
15-15-98-0 00,1 1150808 —15-140008

Figure 5.3: MLP networks with 15 inputs trained with 10000 epochs

Again as we have seen before, 3 networks shown in yellow (5 hidden units), grey (10
hidden units) and blue (15 hidden units) appear to have had problems. Not surprising,
they too had a learning rate of 0.8 and a momentum of 0.9. This time though they did
manage achieve a low enough final error, but their learning is erratic. This would
suggest that these parameters had caused the networks to oscillate instead of finding
their true minimum. Out of the 108 different MLP network combinations only 6 didn’t
pass. Table C.1 shows these topologies.

If we move on to the TDNN networks, Figures 5.4 below shows the effects of training
TDNN networks with 5 inputs.

31

10E+DD

470 a0 1ummm1smmmm1mmmmmmrmﬁmmaﬂnm1nﬂd

e o e) e e e e |
100801 | B
t I
1 b
1 LI,
[RE
! |
1 E0 1L il i L
AL . |
= BE . =‘
ey T L
SO) - 2 R = ===
: S e e . . — C - T o T T -
B o S T T P PEE
— 6510000 — 5100001 Gl 10105 S5:100009 —— %5030 —— 5502400 —— 5510205
— 4510300 451080 410000 451050 % 45-1-08-08 SE4-20.01-0 &4-3-001-0.0
55200005 S5 T001080 - 552820 L5 30301 L5-10.308 5520 209 5530840
Gl 2-0.30.1 ——— &30 08 G:d2 0300 —— &0y — 1010080 ——&100000-08 —— & a0-0%
£A0-1028 -E0-10301 ——510-10308 ——E 5200 L1080 ——&A0-1-08-0.1 Eal108058
=010 300 S 1030000 ——G 103000 S0 010.% ——S|RI0000F —&I030 00 — I a00
SA0-30 205 = 1303080 S-10-3-08-0 020800 S 1Q-2-0.80 5 100808 S H-1001-0
515800109 151008058 — 515100000 1020 —— & 15-1-0.30.1 5151.0208 — — 58510209
= = —&1-1080 110800 F0R0E - - = RE80E - - D - 00 - A0
515200109 S 152030 51520301 S 15202405 1520200 S15.3.03-0 SBE20840.0
SeASd-pgps — =~y AR08

Figure 5.4: TDNN networks with 5 inputs trained with 10000 epochs

7 combinations showed no sign of learning and are shown under the broken red and
blue lines. 6 of these had 15 hidden neurons and the other had 10. All had 2 delays.
Several of the networks initially appeared not to learn, before their error rapidly dropped
over a few epochs. Two networks shown as the grey (5-5-2-0.2-0.9) and mauve
(5-15-1-0.8-0.9) show signs of oscillation about the error surface. Table C.2 shows the
full listing of failed network combinations with 5 inputs. It can be seen that 21 out of
these 28 networks had 2 delays. With 36 possible networks with 5 hidden neurons and
2 delays, this represents just over 58 percent of them. Figures 5.5 below shows the
effects of training TDNN networks with 10 inputs

1 DOE+DD

a0 @30 1mmmm1smmmm1mmummmmmmmnm1nﬂd

VADE-02

1O0E-04

—— & 0018 —— W DDA IEI00105 OEIO008 —— 61030 —— 610201 —— 05 10T05

— 110208 1080 19-4-1-08-01 10210004 10808 18410 010 10-5-28.00-01
10-4-3001-0.5 A0S —— IE303D 105305401 503405 15-2-0.30.9 10-8-2064
DHTOIN —— WREFOIOE IREL0T0E —— 10010010 - B 001 ——— 1 10 1008 ——— 101010010

—— O —— W03 —— D0 S —— 0000 30 i —— 0801 10-10-1-0 305

—— IDNDED S WIR20010 - 1 10-20.0000 1010200105 —— ML 10200108 —— IR 102030 ——— 10:10:20 201
ADIDINE = I OIE Y = (BT ED 01030801 1200 5 A3 D = 10-15-1-0 010
10151081401 W 15100105 —— I0-15-1-0.0003 0180020 —— B 15102410 1510305 — — — 101510208

= = = 1IE10E0 B 1 108401 I 10RIS — — 10808 — = - W00 — — — IR0 — — =100 5
1015208130 2020 11520201 101830 205 15202400 11520 60 101820 301
S 0808 — — — 101430850

Figure 5.5: TDNN networks with 10 inputs trained with 10000 epochs

32

Out of the twelve networks that had 15 hidden units and a delay of 2, only
10-15-2-0.2-0.1 actually learnt anything. This network was also evicted though for not
reaching a sufficiently low enough error. Nine others also didn’t achieve any learning,
and out of these, only 10-15-1-0.01-0 and 10-15-1-0.8-0.9 didn’t have 2 delays. These
two did however, have the largest and smallest learning rate/momentum combinations.
Table C.3 shows the full listing of failed network combinations with 10 inputs. Again, only
7 out of 32 networks didn’t have 2 delays. This time over 69 percent of the 2 delay
networks failed.

Figures 5.6 below shows the effects of training TDNN networks with 15 inputs

100200
470 G 190B 17T 2398 15 1094 TS AZT A001 5180 TR0 DMGE 6507 TS TAOS TUT4 BME BOE 033 D8]
‘- e e e e e e e
J I
10E-01 - i .
|
1
i
H
vmeoz - §4 ‘\",
0 | r:
i) ; (W =]
¢ E I s, il
1006053 - ! e
10E-04 -
—— TG00 —— IEETO0I] T TO0T 06 TRE00T08 —— ET030 —— WA T050] —— 5510308
—— A0S rERrTT 18810501 14510804 e 15240010 18638 0101
155200105 FEENTHET 1543020 155203401 E5T0305 154630308 15630 B0
15-5-2020.1 VEGTO05 WEDOZOR —— 11010010 V1B 1G0T ——— 150D 01D S ——— 15 10-1-0.0105
— SO 02— 1S A0S —— 151010 308 B ED —— 1510 AT 15-10-1-0 305
e 151010 £-0.0 VEIRZOOD M2 R010.1 PR0ZORDS e B IR 00008 —— 15II0ES ——— 151020201
810303405 TATErTEY) 1% 802880 151030 80,1 15 8- 260 5 151030 8840 18-18-1-0 6.0
1516100801 B 1510010 5 —— 1555180100 151050 —— 155 10501 151510295 — ——1516.1.0308
— =~ 15150 V-1 108401 TR0~~~ LIB0E —— IR0 — — —1SIRIO000 — — 1515300105
15-15-3-008-09 B 1520248 15-152820.1 15153030 5 151520300 1515240050 15-15-2-0.4-0.1
1180805 — = ~ 1S3 0008

Figure 5.6: TDNN networks with 15 inputs trained with 10000 epochs

Again, only one network that had 15 hidden neurons and 2 delays showed learning
ability. This was the 15-15-2-0.8-0.1 topology. However, what it did produce was not
sufficient enough to get it through this stage. In addition, the 15-5-2-0.8-0.9 combination
was the only 0.8 learning rate/0.9 momentum network that had any error reduction. Of
the 216 different TDNN topologies trained, 101 showed poor learning or signs of being
stuck in local minima.

Table C.4 shows the full listing of failed network combinations with 15 inputs. This time
13 from 41 failed networks had 1 delay, giving a 78 percent failure rate to the 2 delay
networks. In addition, clustering can also be seen around the 15 hidden, 1 delay and
0.01 learning rate combination, with all of them failing.

As for the RNN networks, Figures 5.7 below shows the effects of training RNN networks
with 5 inputs.

33

-
T = R TR -.liil-'.ﬂ x I@ FFD 0305
. 501080 525-0.1-08-0.1 525=0.1-0.8:0 i 'I:gﬂﬂ =001:0.1
- D 500105 008 50 20 E— 201 o) 500 20 0 o) B
— —_— 305 SDEDS B0 B0080.0 05 00109
<0020 300 ——55D030 200 - — 550Dl —— B0
-I.ﬂ? L A0 — 5100100101 — 30008 ——— 51040 108 —— 5. 10401 — 5100, . A
el pﬁﬁ -ﬂ_ﬁ e B 1 r e . 100, 10 7 i, 14 — ir } [T -0
-] - [T] s = — =100
- - 800 1~ e T — ==t 1 0 —— - 1 .———-1& B
— — —BI0.R0 0100 8009020 00602401 IOBE205 — — ~GI0GREI08 — — 510004 — = A0 RDED.
3 £ == = @ - -AIR0100LD 160,10 0101 160100105 — — ~AAEDEL01.08 — — —& 1608020
= = EAERLDE0 o ERRDI0E0E == = E 1501 i | it) -2 B B it S SR & = =5 15000809
= s B R0 L0 B - R Bl = = =5 150 5001.0 5 -15-0 58001 - e |2 L 4 == =515050 i
- === ; § === l;_: _--_mj ___I__lﬂ i
=== 04— — -4 Lo 1 , TR e —= = 181

Figure 5.7: RNN networks with 5 inputs trained with 10000 epochs

RNN networks with 5 input neurons showed similar learning ability to MLP networks with
5 input neurons. As with the MLPs, the main problem faced by some of these networks
was getting stuck in local minima. Not surprisingly all networks with the 0.8 learning
rate/0.9 momentum suffered from this.

Figures 5.8 below shows the effects of training RNN networks with 10 inputs.

Figure 5.8: RNN networks with 10 inputs trained with 10000 epochs

34

RNN networks with 10 input neurons produced the best RNN results with only 5 out of a
possible 108 failing. All of these had the 0.8 learning rate/0.9 momentum combination.

Figures 5.9 below shows the effects of training RNN networks with 15 inputs.

1.00E+00

A0 B3 14908 90T 2330 915 XM T3 427 4801 5100 0o olig SWT TS TOS T4 e S0U 0381 ee%0

L
(=

(Sarsot=t

i)
=
-

e
P ki

s

ALy o
BT
e e

VW‘n"‘T‘W‘\""‘T"qu’:-’;:’:-’,

ke

=
I I I Al o il o~

T

LA MU AL A 9

AP by = P
ItateSuteiuetatvni=tul

s Cpetnalnip ety

x i i o
e i o e i o
Lo B bt i
it et i i

b b b e
e T T ETe e Tk
b S o oo S S

I 1

I I

1 1

ettt Dol

e T

i

Figure 5.9: RNN networks with 15 inputs trained with 10000 epochs

The main cause of failure for RNNs with 15 units is the inability to converge. This can be
seen in the blue (15-5-0.9-0.8-0.9) and maroon (15-10-0.5-0.8-0.9) lines. One network
showed no learning. This is the 15-15-0.9-0.8-0.9 network and is shown as the broken
red line. The vast majority of the RNN networks did pass the training phase though, with
only 27 out of 324 being excluded from the next stage. These are listed in Table C.5.

5.2 Training Findings

What is obvious about the results of the MLP training is that all networks that were
eliminated had learning rate of 0.8 and momentum of 0.9. There were initially nine
networks that used these values, so this group represented two-thirds of them. The
three networks with 5 inputs, showed smooth learning, but did not achieve a sufficiently
low error. This would suggest that they were stuck in local minima. The three networks
with 15 inputs achieved a low enough error, however they showed erratic learning. This
would suggest that these parameters had caused the networks to oscillate instead of
finding their true minimum.

The main cause of TDNN failure at this stage is the number of delays. Of the 101
networks that did not make it past this stage, 27 had one delay and 74 had two delays.
The effect of the delay appears to outweigh more subtle effects caused by learning
rate/momentum combinations. However, of the networks that had only one delay,
clusters have emerged around larger network topology and certain learning rates. This
is most evident with a learning rate of 0.01.

35

Training results of the RNN networks are similar to those of the MLP, where of the 27
failing networks, 23 had the 0.8 learning rate — 0.9 momentum combination. The
remaining 4 networks also used a momentum value of 0.9. As with the TDNN networks,
clusters of networks were eliminated which had similar topologies, but varying memory
depths.

5.3 Testing and Validation Results and Analysis

The Testing and Validation Stages are where the real ability of the networks to
generalise is discovered (Kaastra, Boyd, 1996). The Test stage involves showing the
networks a single pass through the testing data set and recording the errors produced.
The main differences between this stage and the training are as follows:

e Data has been unseen by the network, as apposed to being repeatedly shown.
e The weights of the connections between neurons are not adjusted.

The test data set comprise of entries between 09/2003 to 02/2004. During the testing
stage overfitting can be detected by training networks with different numbers of epochs
and detecting deterioration in generalisation ability over the test data. For the purposes
of this project, 1000, 3000, 5000, 7000 and 10000 epochs were tested. Figure 5.10
shows a cross-section of results for the MLP networks when trained with different
training periods.

(R IS

1, 8081

140605

120603

1.006-03

S006-04 - —_

A00E-04 T —
200604

0 LOEHD - - _ |

00 3000 000] A00EK0

[—s50200 —s5080 &i50z05]

Figure 5.10: Errors of a cross-section of MLP networks when trained with different training periods showing optimal
training length. Network topologies shown in the legend are represented

Figure 5.11 shows a cross-section of results for the TDNN networks when trained with
different training periods.

36

A e] o 00 A

[—=8&t0208 — 8040201 &1540800)

Figure 5.11: Errors of a cross-section of TDNN networks when trained with different training periods showing optimal
training length. Network topologies shown in the legend are represented

Figure 5.12 shows a cross-section of results for the RNN networks when trained with
different training periods.

230802

ZEDT

2. MED

ZO0EDT

1 MELD

|— 1050800006 — 40 40-05-0.0-0.9 A0 4505020

Figure 5.12: Errors of a cross-section of RNN networks when trained with different training periods showing optimal
training length. Network topologies shown in the legend are represented

Initial analysis of the testing results showed a wide range of optimal training epochs. It

was therefore decided that all networks would also be validated with each of the
different number training epochs as well.

37

The validation stage is similar to the testing stage however a different data set is used.
Generalisation ability is determined over performance on both sets. The data used for
validation is from 02/2004 to 07/2004. Figures 5.13 shows the combined results of the
test and validation, together with their mean, for the MLP networks trained with 1000
epochs.

VED EEREEREEr T ,
T . e

'I_,- -
. J"“li. - fx_Ar L) ol — -‘{-'_P“_'
Y] - * ——_ [= L -

Ji— el f- e !

1 E02 -

=
Sfeet
-

z
et
S eE

e —

T
| ey

IEN

Lt~
1
iy o

1 DOE-D4

Sirpul 3 S eputs 10 Firgu® 1% 10IgwE S 10 imputs 90 0 ity 15 Winpwrd ¥ npetr 0 1%ievE 19
Feddun hiddan b Fuisd ch e hiddan hidden higd e hiddan Pl chd
| — Tl 1000 Epacha — "l dieh D000 Epechi — ltaan 1000 Epachi |

Figure 5.13: Log graph showing test and validation results together with the mean, for MLP networks trained with
1000 Epochs. Each individual network is represented by a point on each line. The scale across the top corresponds
to the total number of networks. The scale across the bottom corresponds to the number of input and hidden units

Each individual network is represented by a point along each line. What is immediately
obvious from this graph is that the 5 input networks have produced by far the lowest
errors over both data sets. Three troughs can be seen in the 5 input section, one for 5
hidden units, one of 10 hidden units and one for 15 hidden units. These correspond to
networks with learning rates of 0.2. It can also be seen that the 10 input networks have
all produced better results than the 15 input networks, with one exception. The high
peak that can be seen towards the end of the 10 input-10 hidden section represents
network 10-10-0.8-0.9. An evenly poor performance can be seen throughout all 15 input
networks. The test and validation lines follow similar paths, peaking and troughing at the
same points. This similarity suggests generalisation on behalf of the networks involved.
An interesting point to note is that all networks appear to have performed better over the
test data than the validation data. This may be due to the fact that the test data was
closest date wise to the training data.

Figure 5.14 shows the combined results of the test and validation, together with their
mean, for the MLP networks trained with 3000 epochs.

38

ED |
Tl]
Pl Wanailiagll a
10E®@
: i ul
! | i
¥ |
vrogen ot JAE 11 z ;
e : 7
L L v F,
15 1 3 i N "I W
=T a1
] 7]
v, y
1IOE M4
Sirpuk 3 Sepus) Sipek 13 0ineukS 0kpur 8 iepur 15 Hepusd Bpet 0 Wingws 15
hesdan hiddan hiddan hiddan hidden Hdden hidden hidden hiddan
[—TwimooEme — didaion 3000 Epoths —— haan 3000 Epocha |

Figure 5.14: Log graph showing test and validation results together with the mean, for MLP networks trained with
3000 Epochs. Each individual network is represented by a point on each line. The scale across the top corresponds
to the total number of networks. The scale across the bottom corresponds to the number of input and hidden units

The test and validation line for MLP networks trained with 3000 epochs again show that
networks performed better with the test data than the validation data. Sections of the
lines representing the 5 input networks are slightly lower than the corresponding
sections for the 1000 epoch trained networks. This indicates they are producing better
results. Little improvement however, can be seen with the 10 and 15 input networks.

Figure 5.15 shows the combined results of the test and validation, together with their
mean, for the MLP networks trained with 5000 epochs.

ED -
; = —— & — -
il - -
A AT F—] —
i AN/ oy
A A
et I._.-'-— N, g ——d
1B
N { 3
10E0 $k f —
.3] =
L .l il
T A I R
= 117 5
1] I W
0B I
Sipus s Seputs 0 SigeE 18 10inpuES 10epus 0 10ispur 15 Mnpusd B npet 10 Wik 15
headan hiddan hiddan hiddan hidden bidden hidden hiddan hiddan
| — Tt mooEmer —vaidaionS000 Epoths —— Waan 5000 Epocha |

Figure 5.15: Log graph showing test and validation results together with the mean, for MLP networks trained with
5000 Epochs. Each individual network is represented by a point on each line. The scale across the top corresponds
to the total number of networks. The scale across the bottom corresponds to the number of input and hidden units

39

Continued improvement can be seen with the 5 input networks and little, if any can be
seen with the 10 and 15 input networks. Three peaks have also started to form in the 5
input section. These represent networks 5-5-0.2-0.9, 5-10-0.2-0.9 and 5-15-0.2-0.9
respectively.

Figures 5.16 shows the combined results of the test and validation, together with their
mean, for the MLP networks trained with 7000 epochs.

VOEDY e R R R R R I R R R EE SRR e
P T e e R
ey — ey
- 1 —- o e
A FAN i ¢ N
PO e e e —_—— —
N | ——Y
T v
a-'. [.---\.—. .'I — |
WEDD v

e

N

E
Y N g ek
e VLT ! =
L r, |l IS T
= i I Y 114
(I VT = L
._,'
| (OE-D4
Sinpuls 3 o Egparts K % ingut 1% 10 irgwE & 10 puts K A0 bepr 15 Wnpws S B npels W 15 gk 15
heddan hiddan hgkian hiddan hiddan hidden hidaden hidden Pkl ar

[—TwimooEmpme — didaionTO0) Epoths —— han 7000 Epocha |

Figure 5.16: Log graph showing test and validation results together with the mean, for MLP networks trained with
7000 Epochs. Each individual network is represented by a point on each line. The scale across the top corresponds
to the total number of networks. The scale across the bottom corresponds to the number of input and hidden units

Further improvement can be seen amongst the best performing 5 input networks, but
deterioration can be seen in the networks representing the three peaks. Slight
improvement can also be seen in parts of the 10 and 15 input sections, with the
formation of several troughs.

Figure 5.17 shows the combined results of the test and validation, together with their
mean, for the MLP networks trained with 10000 epochs.

40

FEDS 4
- =" = 7 T —
L8} S :
|
—_,-"h'-_. ‘——\—_Arl"\.‘l,-' [
1 E0R
1ED &‘ ra
ey =1 ey oL
T 1 TSN I i
Rl I 1) W8 |]
I =1 I41 .I"“' I
v b A
VOED+
Sinpuk 4 & eguts 10 Sirpuk 1% 10ipuE S 10 ity 40 A0 gy 15 Winpwr S nper 0 18 igE 15
heddan hiddan hickdan hiddan hiddan hidden hidden higddan Fckar

| — Tewt10000 Bpects ——validion 10000 Epesta —— Mian 10000 Epech |

Figure 5.17: Log graph showing test and validation results together with the mean, for MLP networks trained with
10000 Epochs. Each individual network is represented by a point on each line. The scale across the top corresponds
to the total number of networks. The scale across the bottom corresponds to the number of input and hidden units

Results for the 10000 epoch networks show a general increase in the number and
magnitude of peaks. Very slight improvement can be seen in the best performing
networks.

Moving on to the TDNN networks, figure 5.18 shows the combined results of the test
and validation, together with their mean, for the TDNN networks trained with 1000
epochs.

1 D0 EHN T O TN TN T L e e e e i SN NN AmTSEAMsEiEmsmissimimssssisammsesmssmssad
0RO .)
i
- ; e
i | T A & I i
L (U Y
III f‘jr’"h' ! '\-'I '__.-
1I0EDZ 455 - é
i l‘---\hr a5] 4 lI.
e —
T = [
| -l
A00E-0%
1NE-04 4 4
4 ingaiis Singais & npuds 0 bnpeis 10 i 10 pass 15 gk Mg npis
& hedden [l 15 hdden B hidden 10 heckden 15 Bidaben 5§ B, A0kt 15 ik

|—— Tast 1000 Epochs —— Validstion 1000 Eposhs —— Whaan 1000 Epochs |

Figure 5.18: Log graph showing test and validation results together with the mean, for TDNN networks trained with
1000 Epochs. Each individual network is represented by a point on each line. The scale across the top corresponds
to the total number of networks. The scale across the bottom corresponds to the number of input and hidden units

41

The first thing that can be noticed with these results compared to the preceding ones is
that there isn’t such a dramatic difference between the different numbers of inputs. 5
input networks show the best results, followed by 10 and then 15 inputs. One 5 input
network appears to be standing out at this time, because of its poor performance when
compared to other 5 input networks. This is the 5-15-2-0.2-0.1 network, and one of the
few remaining 2 delay networks.

Figure 5.19 shows the combined results of the test and validation, together with their
mean, for the TDNN networks trained with 3000 epochs.

1 DOEHN T O TR T TR

1B "
il | T
et f@%i
PR 2 | I B/ T
W AT I e W 1 A
|_ g Y B WA
100E02
= = =
o 7
T G = T T
K -:.'. Y
'.\-_:_\.-‘ |‘-L-'|l:"""‘ - '
S AT - —T
1, DOE-0 — ‘ L
1/0E-04
& gy Slinguts & npds 10 gt 0 gt 10 et 1S inpats ¥ inpar 1 inpAs
£ hudden 1hidan 15 Hiden i hdden IDhicden TGRedden G hddes (0kidden 15 hidden

[Test 3000 Epochs — Validation 3000 Epohs — Maan 3000 Epachs |

Figure 5.19: Log graph showing test and validation results together with the mean, for TDNN networks trained with
3000 Epochs. Each individual network is represented by a point on each line. The scale across the top corresponds
to the total number of networks. The scale across the bottom corresponds to the number of input and hidden units

Results for the 3000 epoch trained networks show general improvement. This can be
seen by the overall lowering and flattening of the lines.

Figure 5.20 shows the combined results of the test and validation, together with their
mean, for the TDNN networks trained with 5000 epochs

42

1 D0EHDD

1RO l'
T T —— A P
ri 3 = AW G
AR 1 o= PR X
T AW s WY 2 :
L_FH A = (! I |
100E-0Z 3
= "
- = kg bt '
e S, L1 Fi
N S |
| - Sl
L®
A4 D0E-0F o - e
10E-04 4 -
& inpuiis Singuis % mpds 10 g 0 npagis 10 npuis LET Hnpuir M inpis
& b (el D5 hedden 6 hksden 10 hedkden 16 B, 5 B A0Bidakas 15 PickSin

|—— Tast 0000 Epochs —— Validatiaa SO0 Epobhs —— Waan 5000 Epochs |

Figure 5.20: Log graph showing test and validation results together with the mean, for TDNN networks trained with
5000 Epochs. Each individual network is represented by a point on each line. The scale across the top corresponds
to the total number of networks. The scale across the bottom corresponds to the number of input and hidden units

Continued improvement can be seen from the flattening of the lines. One network has
performed quite badly though. This network had the 10-10-1-0.8-0.9 topology.

Figure 5.21 shows the combined results of the test and validation, together with their
mean, for the TDNN networks trained with 7000 epochs

1E-01 -
fr
I Fi L
| 1LY =
= 1 ﬁ: -
—— - = = i —
), S b 1
1 D0ENZ
e
= ﬂﬁ\k T
] N I
b e \._J|1
1 O0E-0 e L =
1 00E-04 - .
4 Ingags Singaks % mpus 10 inpats 10 npeats 1@ iepsis 16inputs 1 npuir 1 inpuis
& haddan B e 15 hidden i b 10 edden 15 B L Db 75 ki

|—— Tast 7000 Epochs —— Valkatisa TOM Ep bl —— Waan 7000 Epochs |

Figure 5.21: Log graph showing test and validation results together with the mean, for TDNN networks trained with
7000 Epochs. Each individual network is represented by a point on each line. The scale across the top corresponds
to the total number of networks. The scale across the bottom corresponds to the number of input and hidden units

43

Slight improvement again can be seen throughout all networks, even the worst
performing one. Quite an even performance can be seen throughout the 15 input
networks.

Figure 5.22 shows the combined results of the test and validation, together with their
mean, for the TDNN networks trained with 10000 epochs

T e T e S ST S TS T oR VA | NI i O
10E-01 W
;1. a1
ri e
N Pl ! — i =
—— . - p— =
I ah'ﬂ':\”-w e l:" N -,
s - =
|r______..-_.-4_‘_..f\p-—_/ o I ! Iy
ANE-0Z
L1 X
AN i
= 'b s, A1 |
o N C NN S
- W -
— ¥ N
100E-0 —
YIDE-D4 <
4§ ngass fingags % inpas 10 inpats Wipsts Diepats 15inputs 1 inputs 1 inpuas
& reddan 0 b 15 badden i b 100 hikden 165 P 5 By ADkkddan 15 hiddan

[Tas1 ¥0000 Epacte —— valkation 10000 Egochs —— Maan D000 Epsche |

Figure 5.22: Log graph showing test and validation results together with the mean, for TDNN networks trained with
10000 Epochs. Each individual network is represented by a point on each line. The scale across the top corresponds
to the total number of networks. The scale across the bottom corresponds to the number of input and hidden units

Very slight improvement can be seen in the 5 input networks. Greater improvement can
be seen amongst the 10 and 15 input networks, with several troughs beginning to form.

Looking now at the RNN networks, figure 5.23 shows the combined results of the test

and validation, together with their mean, for the RNN networks trained with 1000
epochs.

44

(e =]

1EN

100 EDE

TIOER -
& nputs 5 Sinputr 10 Sinpek 15 A nputs & Wirguts 90 W inpyulr 14 Hinpus 4 15 nputs 90 15 ingats 15
Baddan hididen hiddan Badden bk i hiddmn hididan B b dd

— Tast 1000 Epcobes — WVakdatin 1000 Epaobs — Mean $000 Epa-rhs

Figure 5.23: Log graph showing test and validation results together with the mean, for RNN networks trained with
1000 Epochs. Each individual network is represented by a point on each line. The scale across the top corresponds
to the total number of networks. The scale across the bottom corresponds to the number of input and hidden units

First observations again show that the majority of networks have performed better with
the test data than the validation data. Again, as with the MLP and TDNN, the 5 input
networks have performed best, followed by the 10 and then the 15 input networks. Even
performances can be witnessed amongst the best and worst performing networks. This
is most evident with the 10 input networks, and to a lesser extent, the 5 input networks.

Figure 5.24 shows the combined results of the test and validation, together with their
mean, for the RNN networks trained with 3000 epochs

1 S0E+D0

1 EH

e B et [_— -

LSRRI, s SV Y.

¥
e T e R R P, e
1 B4R

100 B4

o
e
]

100 B0

T B
& nputl 5 Sinpuir 10 & irgek 18 A inputr & Wingutr 90 A0 inpylr 8 Hinpu 3 15 nputs 90 1% ingata 15
Eaddan hiddan hiddan Eadden hiddan hidden hiddan Biddan hidd wn

— Taerh 2000 Bty = Vi kdurthsn 2000 E s 0B —Ml-InIIIIEEtI':II

Figure 5.24: Log graph showing test and validation results together with the mean, for RNN networks trained with
3000 Epochs. Each individual network is represented by a point on each line. The scale across the top corresponds
to the total number of networks. The scale across the bottom corresponds to the number of input and hidden units

45

Three deep troughs can be observed in the 5 input networks. These represent networks
5-15-0.1-0.8-0.5, 5-15-0.5-0.8-0.5 and 5-15-0.9-0.8-0.5 respectively. The remaining 5
input networks also show improvement. The results for the 10 input networks show a
flattening out of the lines. In this case, this represents a general deterioration in results.

Figure 5.25 shows the combined results of the test and validation, together with their
mean, for the RNN networks trained with 5000 epochs.

1 20E+DD
1NHI%
= LM%
R S
T Ty o oo
e i T i
1 i B
10EE i
L S
ke -
|| | AT
: | "HETWEN
k'
1 .00 B4 :
:
1B 4

& nputs & Sinputs 10 & irgek 15 0 nputs & Wirguir 90 W irpylr 14 Hirpuk 8 5 inputs 90 18 irgats 15
Eiddan hidden hiddan Eadden hiddin Hddan hidsn Baddis Hidan

|_ TastSO000 Epoots — Vakdatin SO00 Epoods —— M an G000 Epa-ohs I

Figure 5.25: Log graph showing test and validation results together with the mean, for RNN networks trained with
5000 Epochs. Each individual network is represented by a point on each line. The scale across the top corresponds
to the total number of networks. The scale across the bottom corresponds to the number of input and hidden units

Continued improvement can be seen in the best performing 5 input networks, but now

deterioration in the worst performing 5 input networks has begun. The results for the 10
and 15 input networks are similar to the 3000 epoch results.

Figure 5.26 shows the combined results of the test and validation, together with their
mean, for the RNN networks trained with 7000 epochs.

46

1 S0 E+D0

- T, S A

. i oo e i e,
1M B2

100 B0
Ty
I I -
| AR
1 M0ES
T—t
—
100 e

& nputl 5 Sinpuir 10 & irgek 1% A inputr § Wingutr 90 W irpylr 8 Hinpu 3 15 nputs 90 1% ingata 15

Exddan hiden hidden Badden hisid e hidden hiddan

hidden

hidden

— Tarh OO0 Epetaier — Viskdurths i TODD E s 0B —Ml-InJ'\DIIEEtI':II

Figure 5.26: Log graph showing test and validation results together with the mean, for RNN networks trained with
7000 Epochs. Each individual network is represented by a point on each line. The scale across the top corresponds
to the total number of networks. The scale across the bottom corresponds to the number of input and hidden units

Again, continued improvement can be seen in the best performing 5 input networks and
continued deterioration can be seen in the worst performing 5 input networks. Results

for the 10 and 15 input networks have remained constant.

Figure 5.27 shows the combined results of the test and validation, together with their

mean, for the RNN networks trained with 10000 epochs.

1 S0E+00
"meo'ﬁ
= T oy M =
el T S L. N e B e
10 ELE
100 B4
11
Ll |
| A i b1k 1
!
1 0B84 t‘_
i
i
LI
T
1[0 ERE -

5 npull 5 Sinpur 10 &gy 15 o npute & Winguis 90 Winpulr 18 S inpuke 4 15 nputs 90

Baiddan hididen hiddan Baddas by hiddan hididan

B

15 ingat 15
P dden

—— Taead W00 Epochs ——Wakdalon 0000 Epoobr —— blasn D000 Epa-che

Figure 5.27: Log graph showing test and validation results together with the mean, for RNN networks trained with

10000 Epochs. Each individual network is represented by a point on each line. The scale across the top corresponds

to the total number of networks. The scale across the bottom corresponds to the number of input and hidden units

47

And again, continued improvement can be seen in the best performing 5 input networks

and continued deterioration can be seen in the worst performing 5 input networks.

Again, results for the 10 and 15 input networks have remained constant.

Tables 5.1, 5.2 and 5.3 below shows the network topologies for the 10 lowest errors
produced, for each of the MLP, TDNN and RNN networks respectively. This table is
based on their mean error for the two stages.

Table 5.1: The 10 lowest error producing MLP network topologies

Input Hidden Learning Momentu Training Mean Error Standard
Neurons Neurons Rate m Epochs Deviation
5 5 0.2 0.1 7000 3.7702 x 10™ 2.0410 x 10
5 5 0.2 0 10000 3.8976 x 10™ 2.1126 x 10
5 10 0.2 0.5 10000 3.9954 x 10 2.1623 x 10
5 5 0.2 0 7000 4.2204 x 10 2.2727 x 10
5 5 0.2 0.1 10000 4.2345x 10" 2.3550 x 10
5 10 0.8 0 7000 4.3540 x 10 2.2507 x 10™
5 10 0.2 0.5 5000 4.3662 x 10 2.1735x10™
5 5 0.2 0.5 10000 4.4039 x 10 2.2766 x 10
5 10 0.2 0.1 10000 4.4094 x 10 2.1690 x 10
5 5 0.2 0 5000 4.4138 x 10" 2.2855 x 10
Table 5.2: The 10 lowest error producing TDNN network topologies
Input Hidden Delays | Learnin Momentu Trainin Mean Error Standard
Neuron | Neuron g Rate m g Deviation
S S Epochs
5 15 1 0.8 0 10000 1.5090 x 10 8.9892 x 10
5 5 1 0.8 0.1 10000 1.5242 x 10 8.9611 x 10
5 10 1 0.8 0.5 7000 1.5243 x 10 8.6739 x 10
5 10 1 0.8 0 7000 1.5288 x 10 9.3511 x 10
5 5 1 0.8 0.5 10000 1.5414 x 10 8.5325 x 10
5 10 1 0.8 0.1 10000 1.5443 x 10 9.6858 x 10
5 15 1 0.8 0.5 10000 1.5450 x 10% 9.1653 x 10™
5 15 1 0.8 0 7000 1.5468 x 10 8.9529 x 10™
5 15 1 0.8 0.5 5000 1.5499 x 10 8.9961 x 10
5 5 1 0.8 0 10000 1.5506 x 10 9.0834 x 10
Table 5.3: The 10 lowest error producing RNN network topologies
Input Hidden | Memory | Learnin Momentum Trainin Mean Error Standard
Neuron | Neuron Depth g Rate g Deviation
S S Epochs
5 15 0.1 0.8 0.5 10000 3.1274 x 10 1.5598 x 10
5 15 0.1 0.8 0.5 7000 4.3492 x 10 1.9963 x 10
5 15 0.9 0.8 0.5 7000 4.4383 x 10 1.3158 x 10
5 15 0.5 0.8 0.5 10000 4.6306 x 10 | 2.9958 x 10
5 15 0.1 0.8 0.5 5000 4.8895 x 10 3.2985 x 10
5 15 0.1 0.8 0.1 10000 5.0883 x 10 9.6812 x 10
5 15 0.5 0.8 0.5 7000 5.4801 x 10% | 2.9280 x 10
5 15 0.9 0.8 0.5 10000 5.5217 x 10% | 2.0923 x 10
5 15 0.5 0.8 0.5 5000 5.6708 x 10 1.5012 x 10
5 15 0.1 0.8 0 10000 5.8506 x 10 6.8800 x 10

48

5.4 Testing and Validation Findings

Probably the most significant indicator of networks ability to generalise is how low an
error it produces when viewing unseen data. If this is taken as the basis for our analysis,
then it can be seen from the above tables, that the RNNs have consistently produced
lower mean errors than the MLPs and the TDNNs over the testing and validation sets,
with the TDNNs unexpectedly producing the worst results of all.

Upon further analysis we can see the following for the MLP networks:

The average error for the top 10 was 4.2065 x 10*

The average standard deviation was 2.2098 x 10*

all of the top 10 had 5 input neurons

None had a learning rate 0.01 or a momentum of 0.9

Network 5-5-0.2-0.1 appears at position 1 when trained with 7000 epochs and

position 5 when trained with 10000 epochs. This would suggest that 10000

epochs causes this network to overfit the data.

e Network 5-5-0.2-0 appears at position 2 when trained with 10000 epochs,
position 4 when trained with 7000 epochs and position 10 when trained with
5000 epochs. As this network has reached its lowest error with the maximum
number of training epochs, it might improve with further training. It is interesting
to note that the effect that momentum has had on the previous network which
has allowing it to converge.

e Network 5-10-0.2-0.5 appears at position 3 when trained with 10000 epochs and

position 7 when trained with 5000 epochs. As this network has also reached its

lowest error with the maximum number of training epochs, it might improve with
further training.

Figure 5.28 shows the performance of the top MLP network against the testing and
validation data.

0K
2 LAY
a [Y
a0 i I ﬂi"-\! ! il il !'. |
T o T yan
WAV Y WAL
frr lf i I !Lﬂ 4 |I 1:*{’. Il,,\’-.q." FI
s | { | At iy by
N % T | v
tha WY My | id
O T i
4300 \J i ;‘.ir ¥ t
| Lnf 1LI
200 lll !
v
S0l +
Test Data Validation Data
107 13 W 28 3 N 43 40 S 81 6T T3 OT BS G0 GF 100 100 115 121 12T 1 130 148 150 15T 16D w5 1T 181 107 160 100

[—F7ze w0 —mrseozoi7om0]

Figure 5.28: Performance of the top MLP network against the testing and validation data

49

This graph shows how close the 5-5-0.2-0.1 network was at predicting each individual
values for both the test and validation data sets. It can be seen that while the network
performed generally well against these data sets, slight fluctuations do appear.

Further analysis of the TDNN results reveal:

The average error for the top 10 was 5.6968 x 10

The average standard deviation was 9.0391 x 10*

All had 1 delay

All had 5 inputs

All had a learning rate of 0.8

The network topology 5-15-1-0.8-0 appeared at position 1 when trained with
10000 epochs and 8 when trained with 7000 epochs. Having performed best at
its maximum number of epochs, this network may perform better with further
training.

The network topology 5-15-1-0.8-0.5 appeared at position 7 when trained with
10000 epochs and 9 when trained with 7000 epochs. Having performed best at
its maximum number of epochs, this network may perform better with further
training.

Figure 5.29 shows the performance of the top TDNN network against the testing and
validation data.

L

Az

100

_:n W L [i)
VAV \’4, o — 7Y
- / Lﬁ MWW ! \
' -'I.:‘.‘ ! |
M iﬁﬂﬁ AL 11 kf
o
T |
- Test Data Validation Data

[—Fm== w0 —ToHNS w1020]

Figure 5.29: Performance of the top TDNN network against the testing and validation data

This graph shows how close the 5-15-1-0.8-0 network was at predicting each individual
values for both the test and validation data sets. Similarly to the top MLP network, that
while the network performed generally well against these data sets, slight fluctuations
do appear.

50

Similar analysis of the RNN results highlight the following:

The average error for the top 10 was 4.9047 x 10°

The average standard deviation was 1.6375 x 10°

All had 5 inputs

All had 15 hidden units

All had a learning rate of 0.8

8 had a momentum of 0.5

The network topology 5-15-0.1-0.8-0.5 appeared at position 1 when trained with
10000 epochs, 2 when trained with 7000 epochs and 5 when trained with 5000
epochs. Having performed best at its maximum number of epochs, this network
may perform better with further training.

The network topology 5-15-0.9-0.8-0.1 appeared at position 3 when trained with
7000 epochs and 8 when trained with 10000 epochs. This would suggest that
10000 epochs overfit this network.

The network topology 5-15-0.5-0.8-0.5 appeared at position 4 when trained with
10000 epochs, 7 when trained with 7000 epochs and 9 when trained with 5000
epochs. Having performed best at its maximum number of epochs, this network
may perform better with further training.

Figure 5.30 shows the performance of the top RNN network against the testing and
validation data.

0K
A
A™ PR
w500 - Oy - Y \ s
/ liI"I. ||I "\-"l' | 1 1Y
/ v i l" A | A I \
/ : 1'1 W II [t A |
y T k
300 1 : 4 Ny 1 LW,
)" L VTI b g Y
i TANAL Y | A
! ""I YR Wy 1
o | W I'IJI
4300 : " i
| l
= | o |
1 L 1
h '
az00 +r—
14
|
|
Eilii +
Test Data Validation Data
17 13 9 25 30 W 43 4 S5 61 87 T3 T B5 61 OF 100 09 115 421 127 133 130 145 151 157 163 55 175 181 107 160 199
[—F7sE 00 —RNNs15010805]

Figure 5.30: Performance of the top RNN network against the testing and validation data

This graph shows how close the 5-15-0.1-0.8-0.5 network was at predicting each
individual values for both the test and validation data sets. It can be seen that the
network has performed exceptionally well. The only slight discrepancies occur around
the maximum and minimum values of each set. Please see Appendix E for a full listing
of these results.

51

5.5 Forecasting

To further analyse the networks forecasting abilities, an additional experiment was
conducted. This test was carried out only on the top network of each type, and each
network was initially trained to its optimal level as identified earlier in this research. A
comparison was then made with a forecast produced by an ARIMA model (see
Appendix D). As a reminder, the network configurations where:

e MLP —5-5-0.2-0.1-7000
e TDNN - 5-15-1-0.8-0-10000
e RNN - 5-15-0.1-0.8-0.5-10000

The forecasting data comprised of FTSE 100 closing price values dating from
05/07/2004 to 09/07/2004, which was held back from the validation data set.

The results of this test can be seen in table 5.4 below

Table 5.4: Forecasting ability comparison between top MLP, TDNN, RNN and ARIMA model

Actual value MLP TDNN RNN ARIMA(1, 1, 1)
4403.2998 4400.305 4401.8 4401.988 4383.90
4370.7002 4371.15 4371.201 4369.427 4372.02
4358.3999 4364.788 4361.637 4360.94 4361.06
4381.1001 4381.45 4382.397 4380.948 4375.08

Figure 5.31 below shows a plot of these results.

A3

[—=FrsEto0 — P TDHN — RHN — AR 1, T

Figure 5.31: Forecasting ability comparison between top MLP, TDNN, RNN and ARIMA model

52

In this instance the ARIMA model has performed fairly badly. This is probably due to a
poor selection of coefficients.

It does not come as any surprise that the RNN network has again come out as the top
network. The RNN networks have consistently produced better results than the other
two types of networks. These results are comparable to the results obtained by Kim
(Kim, 1998) who in addition to the TDRNN, also compared RNN and TDNN networks.
Kim also achieved a better performance from the RNNs than the TDNNSs.

What is more of a surprise, with respect to the previous empirical results, documented

in this report, is that the TDNN network has outperformed the MLP network on this
occasion. This would make this result more in line with accepted theory.

53

Chapter 6 — Conclusions

6.1 Summary of Research

The purpose of this project was to test and compare the ability of three different types of
neural networks at forecasting the end of day closing price of the Financial Times Stock
Exchange 100 Index.

The networks chosen for this experiment where the standard Multilayer Perceptron, The
Time Delay Neural Network and a version of the Recurrent Neural Network based on the
Elman Network.

All networks used the back propagation learning algorithm, or in the case of the TDNN
networks, a slight variation of it. All networks also used the Sigmoid transfer function
with a fixed slope parameter of 1. Various different network topologies where examined.
These where made up of either 5, 10 or 15 input units and 5, 10 or 15 hidden units.
Several different values where used for the network parameters. These included 0.01,
0.2 and 0.8 for the learning rate and 0, 0.1, 0.5 and 0.9 for the momentum. Additionally,
TDNN'’s were tested with 1 and 2 delays and RNN’s were tested with memory depth of
0.1, 0.5 and 0.9. Data used in the experiments consisted of end of day closing price
values of the FTSE. This was divided up into 3 sets, known as the training, testing and
validation sets. By the very nature of the data used, values were fed to the networks
using a sliding window.

The first stage in examining the networks, was training. This involved repeatedly
showing the networks the training data, adjusting them and then recording how well they
learnt. Networks that showed little ability to learn or learnt erratically were then
eliminated.

The second stage was the testing stage. This concerned showing the networks new
data only once and recording how well they predicted it. Various amounts of training
were given to the networks to find the optimal amount.

The third stage was validation. This involved showing the networks that had been
trained to their optimal point, another new set of data and recording their prediction. The
networks that performed best over the testing and validation stages were then selected.

A final forecasting test was then undertaken on the best networks with data that had
been held back from the validation set. The results of this test were then compared with
a forecast made using an ARIMA model.

6.2 Conclusions

There are several conclusions that can be drawn from this research. Firstly, the

performance of the best RNN network was far superior to that of the MLP and TDNN
network. Over the test and validation stages the MLP performed better than the TDNN

54

network, however on the final forecast test this was reversed. This would be more in
line with proven theory.

The final mean error achieved by the top networks over the forecast data set was
3.0132 x 10 for the RNN, 3.7312 x 10™* for the TDNN and 5.8141 x 10 for the MLP.
This can be compared to the error obtained from the ARIMA model which was 1.6787 x
102,

As a general rule, the combination of a high learning rate and a high momentum was a
very bad one. Networks that used these as parameters tended to either get stuck in
local minima or produced erratic results.

The number of neurons used also played an important fact in determining performance.
Networks that had a high number of input neurons achieve exceptionally bad results.
The desired number of hidden units varies for MLP and TDNN networks, but the best
results obtained from RNN networks all used the largest amount of units.

While training is an important stage for assessing the ability of networks to learning, the
true test of a networks generalisation ability can only be discovered during the testing
and validation stages.

The optimal number of training epochs should be used to obtain the best results, but
when testing and analysing a great many networks, there will also be many optimal
values.

MLP networks produced the best results when they had a medium learning rate and a
small amount of momentum.

TDNN networks produced best results when they had a high learning rate and a small to
medium amount of momentum. The overriding factor that affected TDNN results was
the number of delays. Any more than one delay appeared to prevent the networks from
achieving any learning.

RNN networks produced best results when they had a high learning rate and a medium
amount of momentum.

The high learning rate desired by TDNN and RNN networks coupled with the fact that
the best results were obtained when the networks were trained with the maximum
amount of training epoch suggests that they may have benefited from additional training.
Unfortunately because of time limitation it was not possible to test this theory.

The overall success of this research has to be related to the ability of the best
performing networks to forecast values from unseen data sets. From this perspective it
would appear that this research has been successful, with the very best network not
varying more than 16 points from the actual value for 200 different values.

55

6.3 Further Research

Probably the biggest guiding factor in the key decisions taken, relating to the course this
research took, was the length of time required to train, test and validate all the different
networks. As a result of this time limitation, it was decided not to test the effect that
different size data sets would have on the results. Furthermore a cap was set on the
maximum number of training epochs that was used. It is proposed therefore that further
research could examine these important areas.

This research concentrated on the ability of networks to forecast closing price values for
the FTSE 100 based solely on previous historical values. As discussed in earlier
chapters, a great many factors are involves in making a price what it is. It is also
proposed that some of these additional influences could also be tested as network
inputs.

56

References
Beale R, Jackson T, Neural Computing an introduction, Institute of Physics Publishing, 2001

Box G, Jenkins G, and Reinsel G, Time Series Analysis Forecasting and Control, 3rd Ed,
Prentice Hall, 1994

Chatfield C, The Analysis of Time Series - An Introduction, 6" Ed, Chapman & Hall/CRC, 2004

Chenoweth T, Obradovic Z, A multi-component nonlinear prediction system for the S & P 500
Index, Neurocomputing 10, 1996, pp275-290

Christodoulou C, MSc Computing Science Course Notes, Birkbeck College University of London,
2004

Elman JL, Finding Structure in Time, Cognitive Science, vol 14, 1990, pp 179-211
Haykin S, Neural Networks A Comprehensive Foundation, 2™ Ed, Prentice-Hall, 1999

Hertz J, Krogh A, Palmer RG, Introduction to the Theory of Neural Computation, Addison
Wesley, 1991, pp 180-181

Kaastra I, Boyd M, Designing a neural network for forecasting financial and economic time series,
Neurocomputing 10, 1996, pp 215-236

Kahn M, Technical Analysis Plain & Simple, Pearson Education Limited, 1999
Kaufman P, Trading Systems and Methods, 3™ Ed, Wiley Trading Advantage, 1998

Kim SS, Time-delay recurrent neural network for temporal correlations and prediction,
Neurocomputing 20, 1998, 253-263

Lang KJ, Waibel AH, Hinton GE, A Time_Delay Neural Network Architecture for Isolated Word
Recognition, Neural Networks, Vol 3 pp23-43, 1990

McCulloch WS and Pitts W, A logical calculus of the ideas imminent in nervous activity. Bulletin
of Mathematical Biophysics, 5:115-133, 1943

MINITAB, Time Series tutorial, www.minitab.com, 2004

Minsky M & Papert S, Perceptrons MIT Press, 1969

NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,
date

Rumelhart D, Hinton G, Williams R, Learning Representations by Back-Propagating Errors,
Nature, Vol 323, 1986, pp533-536

Sarle W, comp.ai.neural-nets FAQ), ftp://ftp.sas.com/pub/neural/FAQ.html, 2004

Schalkoff R, Artificial Neural Networks, McGraw-Hill, 1997
57

http://www.google.com/url?q=http%3A%2F%2Fwww.minitab.com%2F&sa=D&sntz=1&usg=AFQjCNEo7fEDW103vrBJMW25JBvhb5qYGA
ftp://ftp.sas.com/pub/neural/FAQ.html

Shazly M, Shazly H, Forecasting currency prices using a genetically evolved neural network
architecture, International Review of Financial Analysis 8:1, 1999, pp 67-82

Tveter D, The Backprop Algorithm, www.dontveter.com, 2001

Valdez S, An Introduction to Global Financial Markets, 4" Ed, Palgrave Macmillan, 2003

Werbos P, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral
Sciences: PhD Thesis, Harvard University, 1974

58

http://www.google.com/url?q=http%3A%2F%2Fwww.dontveter.com%2F&sa=D&sntz=1&usg=AFQjCNEEWFcGfcLaHBswIDYPQvSY050_Lw

Appendices

Appendix A: Project Source Code

Appendix B: Project Schema and XSL Stylesheet

Appendix C: Networks that failed the training stage

Appendix D: ARIMA forecasts of project FTSE 100 data

Appendix E: Test and validation results for RNN — 5-15-0.1-0.8-0.5-10000
Appendix F: Read Me

59

60
93
94
98
103
106

BiasNeuron.java
ContextNeuron.java
ContextSynapse.java
DataProcessor.java
HiddenNeuron.java
InputNeuron.java
MLP.java
Network.java
Neuron.java
OutputFile.java
OutputNeuron.java
RNN.java
Synapse.java

TDNN java
Test.java
XMLParser.java

Appendix A — Source Code

60

61
62
63
64
65
66
68
69
78
81
82
83
85
87
89
92

BiasNeuron.java

/**

* The BiasNeuron class creates Bias Neurons which have a fixed value of -1
* @author Raymond McBride

*/

public class BiasNeuron extends Neuron{

/**
* This constructor for the <code>BiasNeuron</code>initialises its input value to -1
*/
public BiasNeuron(){
super();
setlnputValue(-1.0);

}

/**
* Calculates the output value
*/
public void calculateOutput(){
setOutputValue(getinputValue());
}
}

61

ContextNeuron.java

/**

* The ContextNeuron class creates Context Neuron which are used to provide recurrency

* in the RNN network. They store the previous Hidden Neuron activated values and a variable
* amount of their own previous values, which is fed back into the network

* @see RNN

* @author Raymond McBride

*/

public class ContextNeuron extends Neuron{

private double memoryDepth;
private double memoryContents;

/**
* This constructor for the <code>ContextNeuron</code> specifies the memory depth
* and sets the input value to 0.5
* @param memoryDepth The memory depth
*/
public ContextNeuron(double memoryDepth){
super();
this.memoryDepth = memoryDepth;
setinputValue(0.5);
memoryContents = 0;

}

/**
* Set the new input value and adds the old value to the memory
* @param input The new input value
*/
public void input(double input){
memoryContents = getlnputValue();
setinputValue(input);

}

/**
* Calculates the output value
*/
public void calculateOutput(){
setOutputValue(getinputValue() + memoryContents*memoryDepth);

}

62

ContextSynapse.java

/**

* The ContextSynapse class is used to connect Context Neurons to Hidden Neurons. They
* have a fixed weight of 1

* @author Raymond McBride
*/
public class ContextSynapse extends Synapse{

/**
* This constructor for the <code>ContextSynapse</code> connects two Neurons together,
* and sets it's weight to 1
* @param inputNeuron The input Neuron
* @param outputNeuron The output Neuron
*/
public ContextSynapse(Neuron inputNeuron, Neuron outputNeuron){
super(inputNeuron, outputNeuron);
setWeight(1);
}

/**
* Transfers a weighted value from the input Neuron to the output Neuron
*/
public void transferValue()X
super.transferValue();
}
}

63

DataProcessor.java

/**

* The DataProcessor class is used to scale the input data between 0 and 1
* @author Raymond McBride

*/

public class DataProcessor{

private double[] inputs;
private double minimum;
private double maximum;

/**
* This constructor for the <code>DataProcessor</code> sets its inputs
* @param inputs An array of input values
*/
public DataProcessor(double[] inputs){
this.inputs = inputs;

}

/**
* Scales its inputs array between 0 and 1
* @return a double array of its scaled inputs
*/
public double[] scale(){
double[] temp = new double [inputs.length];
minimum = inputs[0];
maximum = inputs[0];
for(inti = 0; i < inputs.length; i++){
if (inputs[i] < minimum)
minimum = inputsli];
if (inputs[i] > maximum)
maximum = inputsli];
}
for(inti = 0; i < inputs.length; i++)
temp(i] = (inputs[i] - minimum) / (maximum - minimum);
return temp;

64

HiddenNeuron.java

/**
* The HiddenNeuron class is used to create Hidden Neurons

*
*

@author Raymond McBride
/

public class HiddenNeuron extends Neuron{

private double[] timeDelay;

}

/**
* This constructor for the <code>HiddenNeuron</code> sets the slope of its activation function
* and the number of it's inputs
* @param slope The slope of the activation function
* @param numberOfinputs The number of inputs
*/
public HiddenNeuron(int slope, int numberOfinputs){
super(slope, numberOfinputs);

}

/**
* This constructor for the <code>HiddenNeuron</code> sets the slope of its activation function,
* the number of it's inputs and the number of delays
* @param slope The slope of the activation function
* @param numberOfinputs The number of inputs
* @param delays The number of delays
*/
public HiddenNeuron(int slope, int numberOfinputs, int delays){
super(slope, numberOfinputs);
timeDelay = new double[delays];

}

/**
* Calculates the summation of the delayed output values
*/
public void calculateDelayedOutput(){
super.calculateOutput();
for(int i = timeDelay.length - 1; i > 0; i--)
timeDelay[i] = timeDelay[i-1];
timeDelay[0] = getOutputValue();
double tempOutput = 0;
for(inti = 0; i < timeDelay.length; i++){
tempOutput += timeDelayl[i];
}
setOutputValue(tempOutput);
}

/**

* gets the delayed output values
* @return a double array of delayed output values
*/
public double[] getOutputs(){
return timeDelay;

}

65

InputNeuron.java

/**

* InputNeuron class is used to create Input Neurons
* @author Raymond McBride

*/

public class InputNeuron extends Neuron{

private double[] timeDelay;

/**
* This constructor for the <code>InputNeuron</code> sets the slope of its activation function
* @param slope The slope of the activation function
*/
public InputNeuron(int slope){
super(slope);

}

/**
* This constructor for the <code>InputNeuron</code> sets the slope of its activation function
* and the number of delays
* @param slope The slope of the activation function
* @param delays The number of delays
*/
public InputNeuron(int slope, int delays){
super(slope);
timeDelay = new double[delays];

}

/**

* Sets the new input Value

* @param input The new input value

*/

public void input(double input){
setlnputValue(input);

}

/**

* Calculates the output value

*/

public void calculateOutput(){
setOutputValue(getinputValue());

}

/**
* Calculates the summation of the delayed output values
*/
public void calculateDelayedOutput(){
for(int i = timeDelay.length - 1; i > 0; i--)
timeDelay[i] = timeDelayf[i-1];
timeDelay[0] = getInputValue();
double tempOutput = 0;
for(inti = 0; i < timeDelay.length; i++){
tempOutput += timeDelay(i];

}
setOutputValue(tempOutput);

66

}

/**
* gets the delayed output values
* @return a double array of delayed output values
*/
public double[] getOutputs(){
return timeDelay;

}

67

MLP.java

/**

* The MLP class is used to create Multilayer Perceptron networks
* @author Raymond McBride

*/

public class MLP extends Network{

/**
* This constructor for the <code>MLP</code> specifies the number of Input Neurons and Hidden
Neurons
* the slope of their activation functions, the learning rate, the momentum, the number of training
* epochs and set a network topology id for use with log files.
* @param inputs The number of Input Neurons
* @param hiddens The number of Hidden Neurons
* @param slope The slope of their activation functions
* @param learningRate The learning rate
* @param momentum The momentum
* @param totalEpochs The number of training epochs
* @param fileID The network topology id
*/
public MLP(int inputs, int hiddens, int slope, double learningRate, double momentum, int totalEpochs,
String fileID){
super(inputs, hiddens, slope, learningRate, momentum, totalEpochs, filelD);
createNeurons();
connectNeurons();

}

/**
* Initialises the network with data
*/
protected void initialise(){
for(inti = 0; i < getlnputNeurons().length; i++){
getinputNeuron(i).input(getinputData((getNextinput() + i +
getinputData().length)%getinputData().length));
getInputNeuron(i).calculateOutput();
}
getBiasHidden().calculateOutput();
getBiasOutput().calculateOutput();
setTargetOutput(getinputData((getNextinput() + getinputNeurons().length -
1)%getinputData().length));
}
}

68

Network.java

import java.text.*;
import java.util.*;
import java.io.*;

/**

* The Network class is the abstract base class for all networks
* @see MLP

* @see TDNN

* @see RNN

* @author Raymond McBride

*/

abstract class Network{

private Neuron[] inputNeurons;
private Neuron[] hiddenNeurons;
private Neuron outputNeuron;
private double learningRate;
private double momentum;
private int epoch;

private int slope;

private double targetOutput;
private double outputErrorTerm;
private double[] hiddenErrorTerm;
private double[] inputData;
private BiasNeuron biasHidden;
private BiasNeuron biasOutput;
private Synapse[][] inputToHidden;
private Synapse[] hiddenToOutput;
private Synapse[] biasToHidden;
private Synapse biasToOutput;
private int nextinput;

private double totalNetworkError;
private OutputFile detailFile;
private int totalEpochs;

private String filelD;

/**
* This constructor for the <code>MLP</code> specifies the number of Input Neurons and Hidden
* Neurons
* the slope of their activation functions, the learning rate, the momentum, the number of training
* epochs and set a network topology id for use with the log file.
* @param inputs The number of Input Neurons
* @param hiddens The number of Hidden Neurons
* @param slope The slope of their activation functions
* @param learningRate The learning rate
* @param momentum The momentum
* @param totalEpochs The number of training epochs
* @param fileID The network topology id
*/
public Network(int inputs, int hiddens, int slope, double learningRate, double momentum, int
totalEpochs, String fileID){
inputNeurons = new Neuron[inputs];
hiddenNeurons = new Neuron[hiddens];
inputToHidden = new Synapse[inputs][hiddens];
hiddenToOutput = new Synapse[hiddens];
hiddenErrorTerm = new double[hiddens];

69

biasToHidden = new Synapse[hiddens];
this.slope = slope;
this.learningRate = learningRate;
this.momentum = momentum;
nextinput = 0;
totalNetworkError = 0;
this.totalEpochs = totalEpochs;
this.filelD = filelD;

}

/**
* Creates the Neurons
*/
protected void createNeurons(){
for(inti = 0; i < inputNeurons.length; i++)
inputNeuronsJi] = new InputNeuron(slope);
for(int i = 0; i < hiddenNeurons.length; i++)
hiddenNeurons[i] = new HiddenNeuron(slope, inputNeurons.length);
outputNeuron = new OutputNeuron(slope, hiddenNeurons.length);
biasHidden = new BiasNeuron();
biasOutput = new BiasNeuron();

}

/**
* Connects the Neurons
*/
protected void connectNeurons(){
for(inti = 0; i < inputNeurons.length; i++){
for(int j = 0; j < hiddenNeurons.length; j++){
inputToHidden[i][j] = new Synapse(inputNeurons]i], hiddenNeuronsj]);
}
}
for(inti = 0; i < hiddenNeurons.length; i++){
hiddenToOutput[i] = new Synapse(hiddenNeurons]i], outputNeuron);
biasToHiddenl[i] = new Synapse(biasHidden, hiddenNeuronsi]);
}
biasToOutput = new Synapse(biasOutput, outputNeuron);
}

/**

* Abstract method to initialise the network
*/

protected abstract void initialise();

/**
* Calculates the output error term
*/
protected void calculateOutputError(){
outputErrorTerm =

slope*outputNeuron.getOutputValue()*(1-outputNeuron.getOutputValue())*(targetOutput -
outputNeuron.getOutputValue());

}

/**
* Calculates the hidden error term
*/
protected void calculateHiddenError(){
for(inti = 0; i < hiddenNeurons.length; i++)

70

hiddenErrorTerm[i] = slope * hiddenNeurons[i].getOutputValue() * (1 -

hiddenNeurons[i].getOutputValue()) * outputErrorTerm * hiddenToOutput[i].getWeight();
}

}

/**

* Calculates the weight change to be made to the Synapses between the Output and Hidden Neurons
* and Bias Neurons
*/
protected void calculateOutputWeightChange(){
for (inti = 0; i < hiddenToOutput.length; i++){
hiddenToOutput[i].calculateWeightChange(learningRate, momentum, outputErrorTerm);
}

biasToOutput.calculateWeightChange(learningRate, momentum, outputErrorTerm);

}

/**
* Adjusts the weights of the Synapses between the Output and Hidden Neurons and Bias Neurons
*/
protected void adjustOutputWeights(){
for (inti = 0; i < hiddenToOutput.length; i++){
hiddenToOutput][i].adjustWeight();
}
biasToOutput.adjustWeight();

}

/**
* Calculates the weight change to be made to the Synapses between the Hidden and Input Neurons
*and Bias Neurons
*/
protected void calculateHiddenWeightChange(){
for (inti=0; i <inputToHidden.length; i++){
for(int j = 0; j < inputToHidden[i].length; j++){
inputToHiddenli][j].calculateWeightChange(learningRate, momentum, hiddenErrorTerm([j]);
}
}
for (inti = 0; i < biasToHidden.length; i++){
biasToHiddenl[i].calculateWeightChange(learningRate, momentum, hiddenErrorTerml[i]);

}

/**
* Adjusts the weights of the Synapses between the Hidden and Input Neurons and Bias Neurons
*/
protected void adjustHiddenWeights()}{
for (inti=0; i < inputToHidden.length; i++){
for(int j = 0; j < inputToHiddenl[i].length; j++){
inputToHidden[i][j].adjustWeight();
}
}
for (inti = 0; i < biasToHidden.length; i++){
biasToHidden[i].adjustWeight();
}
}

/**
* Transfers the weighted values to the HiddenNeurons

*/

71

protected void sendToHidden(){
for(inti = 0; i < inputToHidden.length; i++){
for(int j = 0; j < inputToHidden[i].length; j++)
inputToHidden([i][j].transferValue();
}
for (inti = 0; i < biasToHidden.length; i++)
biasToHidden[i].transferValue();

}

/**
* Calculates the output of the HiddenNeurons
*/
protected void calculateHiddenOutput()}{
for(inti = 0; i < hiddenNeurons.length; i++){
hiddenNeuronsii].calculateOutput();

/**
* Calculates the output error
*/
protected double calculateError(){
double error = targetOutput - outputNeuron.getOutputValue();
return 0.5 * error * error;

}

/**

* Transfers the weighted values to the OutputNeuron
*/
protected void sendToOutput(){
for(inti = 0; i < hiddenToOutput.length; i++)
hiddenToOutput[i].transferValue();
biasToOutput.transferValue();

}

/**
* Trains the network
*/
public void train(double[] data){
inputData = data;
epoch = 0;
double error;
while((epoch < totalEpochs)X{
initialise();
sendToHidden();
calculateHiddenOutput();
sendToOutput();
outputNeuron.calculateOutput();
totalNetworkError += calculateError();
calculateOutputError();
calculateOutputWeightChange();
calculateHiddenError();
calculateHiddenWeightChange();
adjustOutputWeights();
adjustHiddenWeights();
if (nextinput >= (inputData.length - 1)){
nextinput = 0;
totalNetworkError = 0;
epoch++;

72

}
else nextlnput++;
}
}

/**
* Tests the network with the required test type
*/
private void beginTest(double[] data, String testType){
detailFile = new OutputFile("../output/"+ fileID + testType + "_" +"details.csv");
inputData = data;
totalEpochs = 1;
nextlnput = 0;
while(nextinput <= (inputData.length - 1)){
initialise();
sendToHidden();
calculateHiddenOutput();
sendToOutput();
outputNeuron.calculateOutput();
totalNetworkError = calculateError();
detailFile.writeToFile("Error" + "," + totalNetworkError);
nextinput++;

}

detailFile.closeFile();

}

/**

* Starts testing the network

*/

public void test(double[] data){
beginTest(data, "T");

}

/**
* Starts validating the network
*/
public void validate(double[] data){
beginTest(data, "V");
}

/**

* Gets the slope

* @return slope

*/

protected int getSlope(){
return slope;

}

/**

* Gets the learning rate

* @return learningRate

*/

protected double getLearningRate(){
return learningRate;

}

/**

* Gets the momentum

73

* @return momentum

*/

protected double getMomentum(){
return momentum,;

}

/**
* Sets the target output
* @param targetOutput the target output

/
protected void setTargetOutput(double targetOutput){

this.targetOutput = targetOutput;
}

/**
* Sets the OutputNeuron
* @param outputNeuron the OutputNeuron
*/
protected void setOutputNeuron(OutputNeuron outputNeuron){
this.outputNeuron = outputNeuron;

}

/**
* Gets the OutputErrorTerm
* @return outputErrorTerm
*/
protected double getOutputErrorTerm(){
return outputErrorTerm;

}

/**
* Gets a hiddenErrorTerm
* @param i its position
* @return hiddenErrorTerm an array of error terms
*/
protected double getHiddenErrorTerm(int i){
return hiddenErrorTerm([i];

}

/**
* Sets a hiddenErrorTerm
* @param errorTerm the new error term

* @param i its position

*/
protected void setHiddenErrorTerm(double errorTerm, int i){

hiddenErrorTerm[i] = errorTerm;

}

/**
* Gets the next input position
* @return nextinput
*/
protected int getNextinput(){
return nextlnput;

}

/**

74

* Gets the Synapse connecting the BiasNeuron to the OutputNeuron
* @return biasToOutput
*/
protected Synapse getBiasToOutput()}{
return biasToOutput;

}

/**

* Sets the BiasNeuron to the HiddenNeurons

* @param biasHidden the BiasNeuron to the HiddenNeurons

*/

protected void setBiasHidden(BiasNeuron biasHidden){
this.biasHidden = biasHidden;

}

/**
* Gets the BiasNeuron to the HiddenNeurons
* @return biasHidden the BiasNeuron to the HiddenNeurons
*/
protected BiasNeuron getBiasHidden(){
return biasHidden;

}

/**

* Sets the BiasNeuron to the OutputNeuron

* @param biasOutput the BiasNeuron to the OutputNeuron

*/

protected void setBiasOutput(BiasNeuron biasOutput){
this.biasOutput = biasOutput;

}

/**
* Gets the BiasNeuron to the OutputNeuron
* @return biasOutput the BiasNeuron to the OutputNeuron
*/
protected BiasNeuron getBiasOutput(){
return biasOutput;

}

/**
* Gets the Synapses between the BiasNeuron and the HiddenNeurons
* @return biasToHidden the array of Synapses
*/
protected Synapse[] getBiasToHidden(){
return biasToHidden;

}

/**
* Gets a Synapse between the BiasNeuron and a HiddenNeuron
* @param i its position
* @return the Synapse at that position
*/
protected Synapse getBiasToHidden(int i){
return biasToHidden[i];

}

75

* Gets a Synapse between a HiddenNeuron and the OutputNeuron
* @param i its position
* @return the Synapse at the position
*/
protected Synapse getHiddenToOutput(int i){
return hiddenToOutput]i];

}

/**
* Gets the Synapses between the HiddenNeurons and the OutputNeuron
* @return hiddenToOutput the array of Synapses
*/
protected Synapse[] getHiddenToOutput(){
return hiddenToOutput;

}

/**
* Gets all the Synapses between the InputNeurons and the HiddenNeurons
* @return inputToHidden the 2D array of Synapses
*/
protected Synapsel][] getinputToHidden(){
return inputToHidden;

}

/**
* Gets the Synapses between an InputNeuron and the HiddenNeurons
* @param i its position
* @return the array of Synapses at that position
*/
protected Synapse[] getinputToHidden(int i)}{
return inputToHidden(i];

}

/**
* Gets the Synapse between an InputNeuron and a HiddenNeuron
* @param i its x position
* @param j its y position
* @return the Synapse at that position
*/
protected Synapse getlnputToHidden(int i, int j)}{
return inputToHidden[il[j];

}

/**

* Gets an InputNeuron

* @param i its position

* @return the InputNeuron

*/

protected Neuron getinputNeuron(int i){
return inputNeuronsi];

}

/**
* Gets the InputNeurons
* @return inputNeurons the array of InputNeurons
*/
protected Neuron[] getinputNeurons(){
return inputNeurons;

76

}

/**

* Sets an InputNeuron

* @param inputNeuron the new InputNeuron

* @param i its position

*/

protected void setinputNeuron(InputNeuron inputNeuron, int i)
inputNeurons[i] = inputNeuron;

}

/**

* Gets a HiddenNeuron

* @param i its position

* @return the HiddenNeuron

*/

protected Neuron getHiddenNeuron(int i){
return hiddenNeuronsi];

}

/**
* Gets the HiddenNeurons
* @return hiddenNeurons the array of HiddenNeurons
*/
protected Neuron[] getHiddenNeurons()}{
return hiddenNeurons;

}

/**

* Sets a HiddenNeuron

* @param hiddenNeuron the new HiddenNeuron

* @param i its position

*/

protected void setHiddenNeuron(HiddenNeuron hiddenNeuron, int i){
hiddenNeurons[i] = hiddenNeuron;

}

/**

* Gets input data at a given position

* @param i its position

* @return the double at that position

*/

protected double getinputData(int i){
return inputData(i];

}

/**

* Gets the input data

* @return inputData

*/

protected double[] getinputData(){
return inputData;

}
}

77

Neuron.java

/**

* The Neuron class is the abstract base class for all Neurons
* @see InputNeuron

* @see HiddenNeuron

* @see OutputNeuron

* @see BiasNeuron

* @see ContextNeuron

* @author Raymond McBride

*/

abstract class Neuron{

private double inputValue;
private double outputValue;
private double[] inputValues;
private double bias;

private int slope;

private int nextFree;

/**
* This constructor for the <code>Neuron</code> sets the slope of its activation function to 1
*/
public Neuron(){
this(1);
}

/**
* This constructor for the <code>Neuron</code> sets the slope of its activation function
* @param slope The slope of the activation function
*/
public Neuron(int slope){
this.slope = slope;

}

/**
* This constructor for the <code>Neuron</code> sets the slope of its activation function
* and the number of it's inputs
* @param slope The slope of the activation function
* @param numberOflinputs The number of inputs
*/
public Neuron(int slope, int numberOfinputs){
this(slope);
inputValues = new double[numberOfinputs];
bias = 0;
nextFree = 0;

}

/**

* Adds a new input value

* @param input The new input value

*/

public void input(double input){
inputValues[nextFree] = input;
nextFree = (nextFree + 1)%inputValues.length;

}

78

/**
* Sets the biased input
* @param input The new input value

*/

public void setBias(double input){
bias = input;

}

/**

* Calculates the output

*/

public void calculateOutput(){
outputValue = sigmoidActivation(this.summation());

}

/**

* Calculates the summation of the delayed output values
*/

public void calculateDelayedOutput(){}

/**
* Calculates the summation of the inputs
*/
private double summation(){
double temp = 0;
for(inti = 0; i < inputValues.length; i++)
temp += inputValues]i];
return temp + bias;

}

/**

* The Sigmoid Activation Function

* @return the activated value

*/

protected double sigmoidActivation(double summation){
return 1/(1 + Math.exp(-slope*summation));

}

/**

* Gets the input value

* @return the input value

*/

protected double getinputValue(){
return inputValue;

}

/**

* Sets the input value

* @param inputValue the input value

*/

protected void setlnputValue(double inputValue){
this.inputValue = inputValue;

}

/*'k

* Gets the output value
* @return the output value

79

}

*/
protected double getOutputValue()}{
return outputValue;

}

/**

* Sets the output value

* @param outputValue the output value

*/

protected void setOutputValue(double outputValue){
this.outputValue = outputValue;

}

80

OutputFile.java

import java.io.*;
import java.util.*;

/**

* The OutputFile class creates log files

*
*

@author Raymond McBride

public class OutputFile{

}

private PrintWriter printWriter;

/**
* Constructor for the <code>OutputFile</code>
* @throws IOException e

*/
public OutputFile(String fileName){
try{
printWriter = new PrintWriter(new BufferedWriter(new FileWriter(fileName)));
}

catch(IOException e){
System.out.printin(e.toString());

}

/**

* Writes data to the file

* @param data The data to be written

*/

public void writeToFile(String data){
printWriter.printin(data);

}

/**

* Closes the file

*/

public void closeFile(){
printWriter.close();

}

81

OutputNeuron.java

/**

* The OutputNeuron class creates Output Neurons
* @author Raymond McBride

*/

public class OutputNeuron extends Neuron{

/**
* This constructor for the <code>OutputNeuron</code> sets the slope of its activation function
* and the number of it's inputs
* @param slope The slope of the activation function
* @param numberOfinputs The number of inputs
*/
public OutputNeuron(int slope, int numberOfinputs){
super(slope, numberOfinputs);
}
}

82

RNN.java

/**

* The RNN class is based on the EIman Network, which has recurrency at the Hidden Layer.
* In addition, there is a self loop at the context layer

* @author Raymond McBride

*/
public class RNN extends Network{

private Neuron[] contextNeurons;
private ContextSynapse[] contextToHidden;
private ContextSynapse[] hiddenToContext;

/**

* This constructor for the <code>RNN</code> specifies the number of Input Neurons and Hidden

* Neurons,

* the memory depth, the slope of their activation functions, the learning rate, the momentum,

* the number of training, epochs and set a network topology id for use with log files.

* @param inputs The number of Input Neurons

* @param hiddens The number of Hidden Neurons

* @param memoryDepth The memory depth

* @param slope The slope of their activation functions

* @param learningRate The learning rate

* @param momentum The momentum

* @param totalEpochs The number of training epochs

* @param fileID The network topology id

*/

public RNN(int inputs, int hiddens, double memoryDepth, int slope, double learningRate, double

momentum, int totalEpochs, String fileID){

super(inputs, hiddens, slope, learningRate, momentum, totalEpochs, filelD);
contextNeurons = new Neuron[hiddens];
contextToHidden = new ContextSynapse[hiddens];
hiddenToContext = new ContextSynapse[hiddens];
createNeurons(memoryDepth);
connectNeurons();

}

/**
* Creates the Neurons
* @param memoryDepth Their memory depth
*/
protected void createNeurons(double memoryDepth){
super.createNeurons();
for(inti = 0; i < contextNeurons.length; i++)
contextNeurons][i] = new ContextNeuron(memoryDepth);

}

/**
* Connects the Neurons
*/
protected void connectNeurons(){
super.connectNeurons();
for(int i = 0; i < contextNeurons.length; i++){
contextToHidden][i] = new ContextSynapse(contextNeurons]i], getHiddenNeuron(i));
hiddenToContext[i] = new ContextSynapse(getHiddenNeuron(i), contextNeurons]i]);
}
}

83

/**
* Transfers the weighted values to the Hidden Neurons
*/
protected void sendToHidden(){
super.sendToHidden();
for(inti = 0; i < contextToHidden.length; i++)
contextToHidden[i].transferValue();

}

/**

* Transfers the weighted values to the Output Neuron
*/
protected void sendToOutput(){
super.sendToOutput();
for(inti = 0; i < hiddenToContext.length; i++)
hiddenToContext[i].transferValue();

}

/**

* Initialises the network with data
*/
protected void initialise(){
for(int i = 0; i < getinputNeurons().length; i++){
getinputNeuron(i).input(getinputData((getNextinput() + i +
getinputData().length)%getinputData().length));
getlnputNeuron(i).calculateOutput();
}
getBiasHidden().calculateOutput();
getBiasOutput().calculateOutput();
for(inti = 0; i < contextNeurons.length; i++){
contextNeuronsJi].calculateOutput();
}
setTargetOutput(getinputData((getNextinput() + getinputNeurons().length -
1)%getinputData().length));
}
}

84

Synapse.java

/**

* The Synapse class is used to connect Neurons together. Synapses are created with
* adjustable random weights.

* @see ContextSynapse

* @author Raymond McBride

*/

public class Synapse{

private double weight;

private Neuron inputNeuron;
private Neuron outputNeuron;
private double weightChange;

/**
* This constructor for the <code>Synapse</code> connects two Neurons together,
* and sets it's weight to a random value
* @param inputNeuron The input <code>Neuron</code>
* @param outputNeuron The output <code>Neuron</code>
*/
public Synapse(Neuron inputNeuron, Neuron outputNeuron){
weightChange = 0;
weight = Math.random();
this.inputNeuron = inputNeuron;
this.outputNeuron = outputNeuron;

}

/**

* Gets the Synapse weight

* @return The weight

*/

public double getWeight(){
return weight;

}

/**

* Sets the Synapse weight

* @param newWeight The new weight

*/

protected void setWeight(int newWeight){
weight = newWeight;

}

/**
* Calculates the weight change
*/
public void calculateWeightChange(double learningRate, double momentum, double errorTerm){
weightChange = (learningRate * errorTerm * inputNeuron.getOutputValue()) + (momentum *
weightChange);
}

/**
* Calculates the average weight change for use with time delays
*/
public void calculateWeightChange(double learningRate, double momentum, double errorTerm, int
delays){
double[] delayedOutputs;

85

if(inputNeuron instanceof InputNeuron){
delayedOutputs = ((InputNeuron)inputNeuron).getOutputs();
}
else{
delayedOutputs = ((HiddenNeuron)inputNeuron).getOutputs();
}
double previousWeight = weightChange;
weightChange = 0;
for (inti = 0; i < delays; i++)
weightChange += (learningRate * errorTerm * delayedOutputs][i]) + (momentum *
previousWeight);
weightChange = weightChange/delays;

}

/**
* Adjusts the weight
*/
public void adjustWeight()}{
weight = weight + weightChange;
}

/**
* Transfers a weighted value from the input Neuron to the output Neuron
*/
public void transferValue()X
if(inputNeuron instanceof BiasNeuron){
outputNeuron.setBias(inputNeuron.getOutputValue() * weight);
}
else{
outputNeuron.input(inputNeuron.getOutputValue() * weight);
}
}
}

86

TDNN.java

/**

* The TDNN class is used to create Time Delay Neural Networks
* @author Raymond McBride

*/

public class TDNN extends Network({

private int delays;

/**
* This constructor for the <code>TDNN</code> specifies the number of Input Neurons and Hidden
Neurons,
* the number of delays, the slope of their activation functions, the learning rate, the momentum,
* the number of training, epochs and set a network topology id for use with log files.
* @param inputs The number of Input Neurons
* @param hiddens The number of Hidden Neurons
* @param delays The number of delays
* @param slope The slope of their activation functions
* @param learningRate The learning rate
* @param momentum The momentum
* @param totalEpochs The number of training epochs
* @param fileID The network topology id
*/
public TDNN(int inputs, int hiddens, int delays, int slope, double learningRate, double momentum, int
totalEpochs, String filelD){
super(inputs, hiddens, slope, learningRate, momentum, totalEpochs, filelD);
this.delays = delays;
createNeurons(delays);
connectNeurons();

}

/**
* Creates the Neurons
* @param delays The number of delays
*/
protected void createNeurons(int delays){
for(inti = 0; i < getlnputNeurons().length; i++)
setinputNeuron((new InputNeuron(getSlope(), delays)), i);
for(inti = 0; i < getHiddenNeurons().length; i++)
setHiddenNeuron((new HiddenNeuron(getSlope(), getinputNeurons().length, delays)), i);
setOutputNeuron(new OutputNeuron(getSlope(), getHiddenNeurons().length));
setBiasHidden(new BiasNeuron());
setBiasOutput(new BiasNeuron());

}

/**
* Calculates the output of the Hidden Neurons
*/
protected void calculateHiddenOutput()}{
for(inti = 0; i < getHiddenNeurons().length; i++)
getHiddenNeuron(i).calculateDelayedOutput();
}
}

/**
* Calculates the weight change to be made to the Synapses between the Output and Hidden Neurons
* and Bias Neurons

87

*/
protected void calculateOutputWeightChange ()}
for (inti = 0; i < (getHiddenToOutput()).length; i++){
getHiddenToOutput(i).calculateWeightChange(getLearningRate(), getMomentum(),
getOutputErrorTerm(), delays);
}
getBiasToOutput().calculateWeightChange(getLearningRate(), getMomentum(),
getOutputErrorTerm());

}

/**
* Calculates the weight change to be made to the Synapses between the Hidden and Input Neurons
* and Bias Neurons
*/
protected void calculateHiddenWeightChange(){
for (inti=0; i < (getlnputToHidden()).length; i++)
for(int j = 0; j < (getlnputToHidden(i)).length; j++){
getinputToHidden(i, j).calculateWeightChange(getLearningRate(), getMomentum(),
getHiddenErrorTerm(j), delays);
}
}
for (inti = 0; i < (getBiasToHidden()).length; i++){
getBiasToHidden(i).calculateWeightChange(getLearningRate(), getMomentum(),
getHiddenErrorTerm(i));
}
}

/**
* Calculates the hidden error term
*/
protected void calculateHiddenError(){
for(inti = 0; i < getHiddenNeurons().length; i++){
double errorTerm = 0;
double[] temp = ((HiddenNeuron)getHiddenNeuron(i)).getOutputs();
for(int j = 0; j < delays; j++)
errorTerm += getSlope() * temp[j] * (1 - temp[j]) * getOutputErrorTerm() *
(getHiddenToOutput(i)).getWeight();
setHiddenErrorTerm(errorTerm/delays, i);

}

/**
* Initialises the network with data
*/
protected void initialise(){
intn=0;
for(inti = 0; i < getinputNeurons().length; i++){
getlnputNeuron(i).input(getinputData((getNextinput() + i +
getinputData().length)%getinputData().length));
getinputNeuron(i).calculateDelayedOutput();
}
getBiasHidden().calculateOutput();
getBiasOutput().calculateOutput();
setTargetOutput(getinputData((getNextinput() + getinputNeurons().length -
1)%getinputData().length));
}
}

88

Test.java

import java.util.*;

import java.io.;

import javax.xml.parsers.*;
import org.w3c.dom.*;

/**

* The Test class is the main class. It creates, trains, tests and validates MLP, TDNN and
* RNN networks with the specified parameters

* @author Raymond McBride

*/

public class Test{

private final static double[] MOMENTUM = {0.0, 0.1, 0.5, 0.9};
private final static double[] LEARNING_RATE = {0.01, 0.2, 0.8};
private final static double[] MEMORY_DEPTH = {0.1, 0.5, 0.9};
private final static int[] DELAYS = {1, 2, 3};

private final static int[] EPOCHS = {1000, 3000, 5000, 7000, 10000};
private final static int[] INPUTS = {5, 10, 15};

private final static int[] HIDDENS = {5, 10, 15};

private double[] trainingData;

private doublel] testingData;

private double[] validatingData;

private Thread mipThread;

private Thread tdnnThread;

private Thread rnnThread;

/**
* This constructor for the <code>Test</code> creates training, testing and validating data sets
* @param trainPath The location of the training data
* @param trainField The XML node tag containing the training data
* @param testingPath The location of the testing
* @param testingField The XML node tag containing the testing data
* @param validatingPath The location of the validating data
* @param validatingField The XML node tag containing the validating data
*/
public Test(String trainPath, String trainField, String testingPath, String testingField, String
validatingPath, String validatingField){
trainingData = getData(trainPath, trainField);
testingData = getData(testingPath, testingField);
validatingData = getData(validatingPath, validatingField);
}

/**
* Gets the data from the <code>Document</code>
* @return a double array containing the data
*/
public double[] getData(String path, String field){
XMLParser parser = new XMLParser(path);
Document xmIDoc = parser.getDocument();
NodeList elementNodes = xmIDoc.getElementsByTagName(field);
ArrayList arrayList = new ArrayList();
for (inti=0; i < elementNodes.getLength(); i++) {
NodeList textNodes = elementNodes.item(i).getChildNodes();
for (intj = 0; j < textNodes.getLength(); j++) {
Node node = textNodes.item(j);
arrayList.add(node.getNodeValue());

89

}
}

double[] data = new double[arrayList.size()];
for(inti = 0; i < arrayList.size(); i++)
datali] = Double.parseDouble((String)arrayList.get(i));

DataProcessor dataProcessor = new DataProcessor(data);
data = dataProcessor.scale();
return data;

}

/**
* Trains, tests and validates the MLP networks
*/
public void testMLP(}{
mipThread = new Thread()
public void run(){
for(inti = 0; i < INPUTS.length; i++){
for(intj = 0; j < HIDDENS.length; j++)X
for(int k = 0; k < LEARNING_RATE.length; k++)
for(int m = 0; m < MOMENTUM.length; m++){
for(int n = 0; n < EPOCHS.length; n++){

MLP mip = new MLP(INPUTS]i], HIDDENS][j], 1, LEARNING_RATEK],
MOMENTUM[m], EPOCHS[n], IIMLP_II + i + ll_ll +j + ||_|| + k + II_II + m + ll_ll + n + II_II).

mlp.train(trainingData);
mip.test(testingData);
mip.validate(validatingData);

2
mipThread.start();
}

/**
* Trains, tests and validates the TDNN networks
*/
public void testTDNN()X
tdnnThread = new Thread(){
public void run()}{
for(inti = 0; i < INPUTS.length; i++){
for(intj = 0; j < HIDDENS.length; j++)X
for(int k = 0; k < DELAYS.length; k++){
for(int m = 0; m < LEARNING_RATE.length; m++){
for(int n = 0; n < MOMENTUM.length; n++){
for(int p = 0; p < EPOCHS.length; p++){

TDNN tdnn = new TDNN(INPUTS]i], HIDDENS][j], DELAYSIK], 1,

LEARNING_RATE[m], MOMENTUM[n], EPOCHS[p], "TDNN_" +i+" "+j+" "+Kk+" "+m+" "+n+" "
+ p + II_II);

tdnn.train(trainingData);
tdnn.test(testingData);
tdnn.validate(validatingData);

90

}
}
2
tdnnThread.start();
}

/**
* Trains, tests and validates the RNN networks
*/
public void testRNN(){
rnnThread = new Thread()}{
public void run()}
for(int i = 0; i < INPUTS.length; i++){
for(intj = 0; j < HIDDENS.length; j++){
for(int k = 0; k < MEMORY_DEPTH.length; k++){
for(int m = 0; m < LEARNING_RATE.length; m++){
for(int n = 0; n < MOMENTUM.length; n++){
for(int p = 0; p < EPOCHS.length; p++){

RNN rnn = new RNN(INPUTSJi], HIDDENS]Jj], MEMORY_DEPTHIK], 1,
LEARNING_RATE[m], MOMENTUMIn], EPOCHSI[p], "RNN_"+i+" "+j+" "+k+" "+m+" "+n+" "+
p+"_");

rnn.train(trainingData);

rnn.test(testingData);

rnn.validate(validatingData);

2
rnnThread.start();
}

public static void main(String[] args){
Test test = new Test("../data/Train500.xml", "indexValue", "../data/Test100.xml", "indexValue",
"../data/Validate100.xml", "indexValue");
test.testMLP();
test.testTDNN();
test.testRNN();
}
}

91

XMLParser.java

import javax.xml.parsers.*;
import org.w3c.dom.*;
import java.io.;

/**
* The XMLParser class is used to parse XML documents and create W3C DOM objects
* @author Raymond McBride

*/

public class XMLParser{

}

private DocumentBuilderFactory factory;
private DocumentBuilder documentBuilder;
private Document document;

/**

* This constructor for the <code>XMLParser</code>builds a new <code>Document</code> from
*an XML file

* @param location The location of the XML file

*/

public XMLParser(String location){

try{
factory = DocumentBuilderFactory.newlInstance();

documentBuilder = factory.newDocumentBuilder();
document = documentBuilder.parse(new File(location));
}
catch(Exception e){
System.out.printin(e.toString());

}

/**

* Gets the Document

* @return a Document

*/

public Document getDocument(){
return document;

}

92

Appendix B — Project Schema and XSL Stylesheet

<?xml version="1.0"?>
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="project">
<xsd:complexType>
<xsd:choice maxOccurs="unbounded">
<xsd:element ref="ftse"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:element name="ftse">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="date" minOccurs="0" type="xsd:timelnstant"/>
<xsd:element name="indexValue" minOccurs="0" type="xsd:double"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmins:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<html>
<titte>Raymond McBride - MSc Computing Science Project 2004 </title>
<body>
<h2 align="center">Financial Time Stock Exchange 100 Index</h2>
<p align="center">
<table border="1" cellpadding="5">
<tr>
<th>Date</th>
<th>Index Value</th>
</tr>
<xsl:for-each select="project/ftse">
<tr>
<td><xsl:value-of select="date" /></td>
<td><xsl:value-of select="indexValue" /></td>
</tr>
</xsl:for-each>
</table>
</p>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

93

Appendix C — Networks that failed the training stage

Table C.1: MLP network topologies that failed the training stage

Input Neurons Hidden Neurons Learning Rate Momentum
5 5 0.8 0.9
5 10 0.8 0.9
5 15 0.8 0.9
15 5 0.8 0.9
15 10 0.8 0.9
15 15 0.8 0.9

Table C.2: TDNN network (5 inputs) topologies that failed the training stage

Input Neurons Hidden Neurons Delays Learning Rate Momentum
5 5 1 0.2 0.8
5 5 1 0.8 0.9
5 5 2 0.01 0
5 5 2 0.01 0.1
5 5 2 0.2 0.9
5 5 2 0.8 0.9
5 10 1 0.2 0.9
5 10 1 0.8 0.9
5 10 2 0.01 0
5 10 2 0.01 0.1
5 10 2 0.01 0.5
5 10 2 0.2 0
5 10 2 0.2 0.1
5 10 2 0.8 0.9
5 15 1 0.01 0.1
5 15 1 0.2 0.9
5 15 1 0.8 0.9
5 15 2 0.01 0
5 15 2 0.01 0.1
5 15 2 0.01 0.5
5 15 2 0.01 0.9
5 15 2 0.2 0
5 15 2 0.2 0.1
5 15 2 0.2 0.5
5 15 2 0.2 0.9
5 15 2 0.8 0
5 15 2 0.8 0.1
5 15 2 0.8 0.9

94

Table C.3: TDNN network (10 inputs) topologies that failed the training stage

Input Neurons Hidden Neurons Delays Learning Rate Momentum
10 5 2 0.01 0
10 5 2 0.01 0.1
10 5 2 0.01 0.5
10 5 2 0.8 0.9
10 10 1 0.8 0.9
10 10 2 0.01 0
10 10 2 0.01 0.1
10 10 2 0.01 0.5
10 10 2 0.01 0.9
10 10 2 0.2 0.1
10 10 2 0.2 0.5
10 10 2 0.2 0.9
10 10 2 0.8 0
10 10 2 0.8 0.9
10 15 1 0.01 0
10 15 1 0.01 0.1
10 15 1 0.01 0.5
10 15 1 0.2 0.1
10 15 1 0.2 0.9
10 15 1 0.8 0.9
10 15 2 0.01 0
10 15 2 0.01 0.1
10 15 2 0.01 0.5
10 15 2 0.01 0.9
10 15 2 0.2 0
10 15 2 0.2 0.1
10 15 2 0.2 0.5
10 15 2 0.2 0.9
10 15 2 0.8 0
10 15 2 0.8 0.1
10 15 2 0.8 0.5
10 15 2 0.8 0.9

95

Table C.4: TDNN network (15 inputs) topologies that failed the training stage

Input Neurons Hidden Neurons Delays Learning Rate Momentum
15 5 1 0.2 0.9
15 5 1 0.8 0.9
15 5 2 0.01 0
15 5 2 0.01 0.1
15 5 2 0.2 0.9
15 5 2 0.8 0.5
15 5 2 0.8 0.9
15 10 1 0.2 0.9
15 10 1 0.8 0.9
15 10 2 0.01 0
15 10 2 0.01 0.1
15 10 2 0.01 0.5
15 10 2 0.01 0.9
15 10 2 0.2 0
15 10 2 0.2 0.5
15 10 2 0.2 0.9
15 10 2 0.8 0
15 10 2 0.8 0.1
15 10 2 0.8 0.5
15 10 2 0.8 0.9
15 15 1 0.01 0
15 15 1 0.01 0.1
15 15 1 0.01 0.5
15 15 1 0.01 0.9
15 15 1 0.2 0.1
15 15 1 0.2 0.5
15 15 1 0.2 0.9
15 15 1 0.8 0.1
15 15 1 0.8 0.9
15 15 2 0.01 0
15 15 2 0.01 0.1
15 15 2 0.01 0.5
15 15 2 0.01 0.9
15 15 2 0.2 0
15 15 2 0.2 0.1
15 15 2 0.2 0.5
15 15 2 0.2 0.9
15 15 2 0.8 0
15 15 2 0.8 0.1
15 15 2 0.8 0.5
15 15 2 0.8 0.9

96

Table C.5: RNN network topologies that failed the training stage

Input Neurons Hidden Neurons Memory Depth Learning Rate Momentum
5 5 0.1 0.8 0.9
5 5 0.5 0.8 0.9
5 5 0.9 0.8 0.9
5 10 0.1 0.8 0.9
5 10 0.5 0.8 0.9
5 10 0.9 0.8 0.9
5 15 0.1 0.2 0.9
5 15 0.1 0.8 0.9
5 15 0.5 0.2 0.9
5 15 0.5 0.8 0.9
5 15 0.9 0.2 0.9
5 15 0.9 0.8 0.9
10 5 0.1 0.8 0.9
10 5 0.5 0.8 0.9
10 5 0.9 0.8 0.9
10 15 0.5 0.8 0.9
10 15 0.9 0.8 0.9
15 5 0.1 0.2 0.9
15 5 0.1 0.8 0.9
15 5 0.5 0.8 0.9
15 5 0.9 0.8 0.9
15 10 0.1 0.8 0.9
15 10 0.5 0.8 0.9
15 10 0.9 0.8 0.9
15 15 0.1 0.8 0.9
15 15 0.5 0.8 0.9
15 15 0.9 0.8 0.9

97

Appendix D — ARIMA forecasts of project FTSE 100 data

The first step in perform an ARIMA forecast is to ensure that the data you are using is
stationary. This usually involves taking its first difference. The table below shows the
validation data set’s first difference.

Table D.1 validation data used in this project, together with its first differences.

Date Index Value 1st Difference Date Index Value 1st Difference
10/02/2004 4404.95 * 22/04/2004 4571.83 31.963
11/02/2004 4396.05 -8.900 23/04/2004 4569.95 -1.876
12/02/2004 4377.73 -18.319 26/04/2004 4571.85 1.891
13/02/2004 4412.01 34.283 27/04/2004 4575.68 3.838
16/02/2004 4408.12 -3.894 28/04/2004 4524.48 -51.204
17/02/2004 4461.49 53.375 29/04/2004 4519.53 -4.947
18/02/2004 4442.90 -18.591 30/04/2004 4489.69 -29.844
19/02/2004 4515.57 72.663 04/05/2004 4547.23 57.545
20/02/2004 4515.04 -0.523 05/05/2004 4569.53 22.298
23/02/2004 4524.31 9.271 06/05/2004 4516.17 -53.362
24/02/2004 4496.76 -27.551 07/05/2004 4498.37 -17.798
25/02/2004 4507.55 10.783 10/05/2004 4395.16 -103.210
26/02/2004 4515.89 8.341 11/05/2004 4454.72 59.564
27/02/2004 4492.21 -23.672 12/05/2004 4412.93 -41.794
01/03/2004 4537.00 44.789 13/05/2004 4453.81 40.880
02/03/2004 4540.11 3.111 14/05/2004 4441.79 -12.019
03/03/2004 4525.13 -14.982 17/05/2004 4403.02 -38.771
04/03/2004 4559.07 33.939 18/05/2004 4414.41 11.391
05/03/2004 4547.08 -11.990 19/05/2004 4471.80 57.394
08/03/2004 4553.75 6.670 20/05/2004 4428.71 -43.094
09/03/2004 4542.01 -11.744 21/05/2004 4431.43 2.724
10/03/2004 4545.33 3.327 24/05/2004 4428.87 -2.561
11/03/2004 4445.22 -100.115 25/05/2004 4418.00 -10.872
12/03/2004 4467.35 22.130 26/05/2004 4438.29 20.283
15/03/2004 4412.93 -54.418 27/05/2004 4453.62 15.334
16/03/2004 4428.90 15.964 28/05/2004 4430.69 -22.931
17/03/2004 4456.80 27.903 01/06/2004 4422.68 -8.009
18/03/2004 4397.87 -58.931 02/06/2004 4422.80 0.118
19/03/2004 4417.74 19.867 03/06/2004 4435.41 12.609
22/03/2004 4333.77 -83.966 04/06/2004 4454 .45 19.042
23/03/2004 4318.51 -15.259 07/06/2004 4491.60 37.150
24/03/2004 4309.45 -9.065 08/06/2004 4504.83 13.227
25/03/2004 4373.63 64.188 09/06/2004 4489.47 -15.352
26/03/2004 4357.53 -16.104 10/06/2004 4486.10 -3.369
29/03/2004 4406.73 49.200 11/06/2004 4483.96 -2.150
30/03/2004 4412.82 6.094 14/06/2004 4433.17 -50.782
31/03/2004 4385.67 -27.150 15/06/2004 4458.61 25.441
01/04/2004 4410.71 25.040 16/06/2004 4491.13 32.515
02/04/2004 4465.61 54.894 17/06/2004 4493.29 2.162
05/04/2004 4480.70 15.090 18/06/2004 4505.81 12.515
06/04/2004 4472.82 -7.879 21/06/2004 4502.18 -3.629
07/04/2004 4468.69 -4.130 22/06/2004 4468.49 -33.682
08/04/2004 4489.67 20.983 23/06/2004 4486.73 18.232
13/04/2004 4515.78 26.108 24/06/2004 4503.19 16.460
14/04/2004 4485.42 -30.357 25/06/2004 4494.05 -9.136
15/04/2004 4505.50 20.078 28/06/2004 4518.68 24.631
16/04/2004 4537.28 31.775 29/06/2004 4512.41 -6.270
19/04/2004 4546.22 8.940 30/06/2004 4464.07 -48.343
20/04/2004 4569.02 22.803 01/07/2004 4424.72 -39.345
21/04/2004 4539.87 -29.152 02/07/2004 4407.40 -17.322

98

Once you are sure that your data is stationary, you need to identify which model (AR,
MA or both) your data fits. This is done by examining the ACF & PACF plots of the
differenced data. Figures D.1 and D.2 below, show ACF and PACF plots for the first
differences of the validation data set respectively.

Autocorrelation Function of 1st Difference of VValidation data

15 <
E 08 -
S o
m 04 -
o 07 = __I_ e — T — = o e
= an g o= 1 : ' i
L L T T T 1 T T £l i P + - m
- o= Y O o e, O RN IV P e O R S .
8 04 -
5 96
<1 08 =
A0 -
I I I
4 14 4
Lag Cor T LBG Lag Corr T LBG Lag Corr T LEQ Leg Com T Lea
02218 490 B -012 -1 184 15 -012 -100 2077 22 005 D37 HES
2 0i7 158 TS & 007 065 1515 18 001 011 2078 5 403 02 BT
3 -2 -111 8.76 0 -013 110 1684 17 -017 -1471 2420 M 011 08 3551
4 a2 07 G &0 1 001 008 1% 34 18 005 D42 M52
5 OD0F 058 1033 12 003 023 1702 19 =000 075 2555
B o8 o5 112 13 -012 -1.08. 1882 2 0 05 2556
T 043 117 134 4 005 045 1915 21 008 06T 2641

Figure D.1: Autocorrelation Function of first difference of validation data

Partial Autocorrelation Function of 1st Difference of Validation data

=
o
= 19 -
m 08 -
Q@ 05
— 04 -
8 07] o o oo — — —— — — — —— T —_——— — - _— — — —
a o | it PR I | Pl n Sl — A
£ 0 JC 1 '] =it .
i SR | FEEIEETEEEE T SIS I T S DRSNS WS- S SR, SR oy
< 04 -
- -0
{_‘u g =
t A0 =
o {
i T T T
4 14 4
Lag Pag T Lag FaAC T Lag PA T Lag PAC
2 18 B <011 15 4 4 27 1

2 z 24 8 003 03 16 <085 050 23 =004 0.38

3 6 65 0 -0,02 -034 7 <217 <168 24 0009 0 84

4 4 41 11 <005 055 18 015 146

5 053 17 <001 <010 19 008 <085

& &7 13 <015 -153 M -801 -1 08

T A7 14 002 0N 16 1 56

Figure D.2: Partial Autocorrelation Function of first difference of validation data

The validation data shows small spikes throughout the plot. The shortness of these
spikes suggests a randomness about the data. This makes the identification of a model
quite difficult. However, as both plots are very similar this would suggest that both AR

99

and MA elements exist. Through trial and error, the model ARIMA(1, 1, 1) has been
chosen.

Figures D.3 and D.4 below show the ACF and PACF plots of the residuals of the
validation data.

ACF of Residuals for Index\/al

{with 85% confidence limits for the autocarrelations)

104
0.8 -
06 -
04 -
0z I
o 8 e S

Autocomelation

D4 —
06—
08
10—

Figure D.3: Autocorrelation Function of residuals of validation data

PACF of Residuals for Index\Val

(with 5% confidence limits for the partial astocorralations)

1.0 -
08
08 -
04 -
0z I

02—
0.4 —
06—
0g
-1.0—

Partial Autocorrelation
L=]
L=1]

Figure D.4: Partial Autocorrelation Function of residuals of validation data

Once it is established that the remaining spikes are due to noise, the model can be
used to forecast. Figure D.5 below is a time series plot of the validation data which

100

shows a 5 day forecast. The forecast values are displayed as red triangles and the
upper and lower 95% confidence limits are displayed as blue triangles.

Time Series Plot for Index\/al
{with forecasts and their 85% confidence limits)

i sl g
4550 o A1
I"J:. oy & B -'I *' II : L]
R S U S A AN
| Nl | lI :n | ¥ . £
w4450 T‘i :ﬂ. 1 | !.‘ A Iﬁ' [f |
a | I, l. L .I I!..Hl Iuj, ...-IF '..-'1 1
| ! J
& ' < Iﬂ: i ;
E ¥ | !.II r
4350 — i
L] |
hJ §
4250 L

10 20 a0 40 50 &0 70 80 80 100
Tirme

Figure D.5: Time series plot together with 5 day forecast for validation data

Listed below in figure D.6 is the printout from Minitab 13 showing various key statistics
together with the forecasted values.

101

ARIMA model for IndexValue

Estimates at each iteration
Iteration SSE Parameters

0 224259 0.100 0.100 0.100 0.100 -1.223
1 167665 0.038 -0.050 0.162 0.249 -1.404
2 158166 -0.112 0.029 0.020 0.385 -1.488
3 148504 -0.262 0.086 -0.123 0.508 -1.569
4 137685 -0.412 0.123 -0.267 0.632 -1.658
5 123858 -0.562 0.116 -0.406 0.766 -1.812
6 110027 -0.631 -0.034 -0.446 0.837 -2.092
7 105695 -0.586 -0.184 -0.378 0.846 -1.983
8 105283 -0.594 -0.229 -0.398 0.850 -1.898
9 105243 -0.569 -0.242 -0.373 0.851 -1.823
10 105239 -0.583 -0.246 -0.391 0.852 -1.832
11 105239 -0.569 -0.247 -0.374 0.852 -1.808
12 105238 -0.580 -0.248 -0.388 0.852 -1.823
13 105238 -0.570 -0.247 -0.376 0.852 -1.809
14 105238 -0.579 -0.248 -0.386 0.852 -1.821
15 105238 -0.571 -0.248 -0.377 0.852 -1.810
16 105238 -0.578 -0.248 -0.385 0.852 -1.819
17 105238 -0.572 -0.248 -0.378 0.852 -1.811
18 105238 -0.577 -0.248 -0.384 0.852 -1.818
19 105238 -0.573 -0.248 -0.379 0.852 -1.812
20 105238 -0.576 -0.248 -0.384 0.852 -1.817
21 105238 -0.573 -0.248 -0.380 0.852 -1.813
22 105238 -0.576 -0.248 -0.383 0.852 -1.817
23 105238 -0.574 -0.248 -0.380 0.852 -1.814
24 105238 -0.575 -0.248 -0.382 0.852 -1.816

25 105238 -0.574 -0.248 -0.381 0.852 -1.814

Final Estimates of Parameters

Type Coef SE Coef T P

AR 1 -0.5744 0.3866 -1.49 0.141
SAR 13 -0.2477 0.1260 -1.97 0.053
MA 1 -0.3812 0.4293 -0.89 0.377
SMA 13 0.8522 0.1109 7.69 0.000
Constant -1.8145 0.9366 -1.94 0.056

Differencing: 1 regular, 1 seasonal of order 13
Number of observations: Original series 100, after differencing 86
Residuals: SS = 93938.9 (backforecasts excluded)

MS = 1159.7 DF =81

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 157 224 506 60.7
DF 7 19 31 43

P-Value 0.028 0.266 0.015 0.039

Forecasts from period 100
95 Percent Limits

Period Forecast Lower Upper Actual
101 4383.90 4317.14 4450.66

102 4372.02 4286.23 4457.80

103 4361.06 4255.64 4466.47

104 4375.08 425523 4494.93

105 4379.39 424560 4513.17

Figure D.6: Minitab printout of forecast for validation data together with key statistics

102

Appendix E: Test and validation results for RNN —
5-15-0.1-0.8-0.5-10000

Table E.1 Test and validation results for RNN — 5-15-0.1-0.8-0.5-10000

Actual Test Value Predicted Test Value Actual Validation Value Predicted Validation Value
4236.39 4265.181 4408.119 4406.415
4202.181 4208.949 4461.494 4461.213
4157.129 4157.912 4442.903 4442.558
4142.725 4142.685 4515.567 4517.578
4091.305 4106.473 4515.044 4515.818
4169.19 4164.496 4524.314 4524.765
4209.055 4209.194 4496.763 4495.647
4274.036 4275.805 4507.546 4507.344
4270.103 4271.01 4515.887 4516.557
4271.96 4272.845 4492.214 4491.34
4268.594 4269.318 4537.003 4539.318
4313.882 4314.114 4540.114 4542.977
4311.024 4310.858 4525.132 4525.688
4362.34 4361.885 4559.072 4559.347
4334.086 4333.073 4547.082 4550.135
4368.816 4368.12 4553.752 4554 .986
4339.675 4338.738 4542.008 4544 414
4343.975 4343.482 4545.335 4547.193
4347.549 4346.945 4445.22 4445.309
4352.313 4351.627 4467.35 4467.942
4285.634 4286.285 4412.932 4413.808
4240.219 4241.061 4428.896 4429.856
4238.996 4239.813 4456.799 4456.974
4251.313 4252.413 4397.868 4398.4
4272.927 4273.979 4417.735 4418.443
4265.652 4266.619 4333.77 4334.43
4300.929 4301.426 4318.511 4323.46
4287.594 4287.999 4309.446 4317.925
4332.574 4332.494 4373.634 4371.241
4330.25 4329.546 4357.53 4357.037
4303.433 4303.601 4406.73 4407.957
4324.195 4324173 4412.824 4413.436
4376.873 4376.741 4385.674 4386.252
4341.764 4340.659 4410.714 4411.347
4345.07 4344.418 4465.608 4465.707
4371.246 4370.624 4480.698 4480.056
4373.041 4371.996 4472.819 4471.932
4396.992 4396.51 4468.689 4468.022
4338.881 4337.913 4489.672 4489.331
4354.705 4354.295 4515.78 4516.79
4327.353 4327.204 4485.424 4484.308
4307.977 4308.501 4505.501 4505.327
4319.025 4319.317 4537.276 4540.12

103

4382.354 4382.697 4546.216 4548.647
4388.745 4387.876 4569.019 4566.201
4370.346 4368.777 4539.867 4542.998
4361.09 4359.962 4571.83 4567.363
4342.602 4342.04 4569.954 4567.893
4410.029 4411.492 4571.846 4568.398
4378.941 4377.582 4575.684 4570.199
4392.024 4391.061 4524 .48 4526.899
4378.213 4377.032 4519.533 4519.785
4367.029 4366.022 4489.688 4489.295
4359.842 4359.076 4547.233 4549.915
4379.583 4379.063 4569.531 4567.419
4335.385 4334.806 4516.169 4516.952
4331.268 4331.245 4498.371 4497.425
4347.643 4347.363 4395.16 4395.134
4347.993 4347.389 4454724 4455.944
4332.96 4332.537 4412.93 4413.657
4354.228 4353.701 4453.81 4454.539
4397.257 4397.479 4441.791 4441.805
4412.279 4412.446 4403.019 4403.655
4423.985 4424 .392 4414.411 4415
4440.871 4442.708 4471.805 4472124
44447 4446.747 4428.711 4428.992
4457.489 4460.266 4431.435 4431.966
4470.383 4473.687 4428.874 4429.238
4476.866 4479.996 4418.003 4418.637
4510.178 4504.565 4438.286 4438.691
4513.252 4507.271 4453.62 4453.522
4505.217 4503.297 4430.689 4431.018
4472.965 4478.022 4422.68 4423.211
4494 .168 4494 4 4422.798 4423.321
4466.292 4471.081 4435.407 4435.821
4449.611 4451.779 4454.449 4454 .404
4440.143 4441.843 4491.599 4491.564
4461.391 4464.634 4504.825 4504.705
4456.081 4459.351 4489.474 4488.335
4487.877 4489.223 4486.105 4485.269
4518.144 4508.673 4483.955 4483.36
4499.27 4500.16 4433.173 4433.623
4511.181 4505.651 4458.614 4459.004
4476.793 4482.279 4491.129 4491.397
4460.81 4464.012 4493.291 4492.704
4445.483 4447.767 4505.806 4505.523
4447.001 4449.286 4502177 4501.579
4468.116 4471.562 4468.495 4467.826
4411.533 4411.057 4486.727 4486.521
4390.676 4389.52 4503.187 4503.446
4381.366 4380.835 4494.051 4493.316
4390.581 4390.297 4518.682 4519.444

104

4398.465 4398.141 4512.411 4512.478
4384.353 4383.221 4464.069 4463.503
4402.723 4402.43 4424724 4425.358
4434.423 4436.595 4407.402 4408.062
4314.696 4314.474 4404.95 4405.626

4257.01 4257.953 4396.05 4396.636
4228.152 4228.659 4377.73 4377.874
4221.707 4222.325 4412.013 4412.726

105

Appendix F: Read Me

This project requires extensive processing capability. It is inadvisable to run this program from
disk. Instead, please copy all files to disk. This project uses Java and XML and therefore requires
the Java API for XML Processing to be installed on the execution environment

There are two options to run this project
Navigate to /project/lib/ and execute project.jar

Navigate to /project/classes/ and execute java Test from a command prompt

The source code for this project is available here:

BiasNeuron.java
ContextNeuron.java
ContextSynapse.java
DataProcessor.java
HiddenNeuron.java
InputNeuron.java
MLP.java
Network.java
Neuron.java
OutputFile.java
OutputNeuron.java
RNN.java
Synapse.java
TDNN.java
Test.java
XMLParser.java

There are several other additional files also included. These are:

The Javadoc

The data files Train500.xml, Test100.xml, Validate100.xml and Forecast5.xml
The project schema and XSL stylesheet

The ant build.xml used for compilation

106

